Timezone: »
Autonomous agents must often deal with conflicting requirements, such as completing tasks using the least amount of time/energy, learning multiple tasks, or dealing with multiple opponents. In the context of reinforcement learning~(RL), these problems are addressed by (i)~designing a reward function that simultaneously describes all requirements or (ii)~combining modular value functions that encode them individually. Though effective, these methods have critical downsides. Designing good reward functions that balance different objectives is challenging, especially as the number of objectives grows. Moreover, implicit interference between goals may lead to performance plateaus as they compete for resources, particularly when training on-policy. Similarly, selecting parameters to combine value functions is at least as hard as designing an all-encompassing reward, given that the effect of their values on the overall policy is not straightforward. The later is generally addressed by formulating the conflicting requirements as a constrained RL problem and solved using Primal-Dual methods. These algorithms are in general not guaranteed to converge to the optimal solution since the problem is not convex. This work provides theoretical support to these approaches by establishing that despite its non-convexity, this problem has zero duality gap, i.e., it can be solved exactly in the dual domain, where it becomes convex. Finally, we show this result basically holds if the policy is described by a good parametrization~(e.g., neural networks) and we connect this result with primal-dual algorithms present in the literature and we establish the convergence to the optimal solution.
Author Information
Santiago Paternain (University of Pennsylvania)
Luiz Chamon (University of Pennsylvania)
Miguel Calvo-Fullana (University of Pennsylvania)
Alejandro Ribeiro (University of Pennsylvania)
More from the Same Authors
-
2021 : State Augmented Constrained Reinforcement Learning: Overcoming the Limitations of Learning with Rewards »
Miguel Calvo-Fullana · Santiago Paternain · Alejandro Ribeiro -
2022 : Convolutional Neural Networks on Manifolds: From Graphs and Back »
Zhiyang Wang · Luana Ruiz · Alejandro Ribeiro -
2022 Poster: A Lagrangian Duality Approach to Active Learning »
Juan Elenter · Navid Naderializadeh · Alejandro Ribeiro -
2022 Poster: coVariance Neural Networks »
Saurabh Sihag · Gonzalo Mateos · Corey McMillan · Alejandro Ribeiro -
2021 Poster: Adversarial Robustness with Semi-Infinite Constrained Learning »
Alexander Robey · Luiz Chamon · George J. Pappas · Hamed Hassani · Alejandro Ribeiro -
2020 Poster: Sinkhorn Natural Gradient for Generative Models »
Zebang Shen · Zhenfu Wang · Alejandro Ribeiro · Hamed Hassani -
2020 Poster: Sinkhorn Barycenter via Functional Gradient Descent »
Zebang Shen · Zhenfu Wang · Alejandro Ribeiro · Hamed Hassani -
2020 Spotlight: Sinkhorn Natural Gradient for Generative Models »
Zebang Shen · Zhenfu Wang · Alejandro Ribeiro · Hamed Hassani -
2020 Poster: Graphon Neural Networks and the Transferability of Graph Neural Networks »
Luana Ruiz · Luiz Chamon · Alejandro Ribeiro -
2020 Poster: Probably Approximately Correct Constrained Learning »
Luiz Chamon · Alejandro Ribeiro -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 Poster: Stability of Graph Scattering Transforms »
Fernando Gama · Alejandro Ribeiro · Joan Bruna -
2017 Poster: Approximate Supermodularity Bounds for Experimental Design »
Luiz Chamon · Alejandro Ribeiro -
2017 Poster: First-Order Adaptive Sample Size Methods to Reduce Complexity of Empirical Risk Minimization »
Aryan Mokhtari · Alejandro Ribeiro -
2016 Poster: Adaptive Newton Method for Empirical Risk Minimization to Statistical Accuracy »
Aryan Mokhtari · Hadi Daneshmand · Aurelien Lucchi · Thomas Hofmann · Alejandro Ribeiro