Timezone: »
This paper presents LiteEval, a simple yet effective coarse-to-fine framework for resource efficient video recognition, suitable for both online and offline scenarios. Exploiting decent yet computationally efficient features derived at a coarse scale with a lightweight CNN model, LiteEval dynamically decides on-the-fly whether to compute more powerful features for incoming video frames at a finer scale to obtain more details. This is achieved by a coarse LSTM and a fine LSTM operating cooperatively, as well as a conditional gating module to learn when to allocate more computation. Extensive experiments are conducted on two large-scale video benchmarks, FCVID and ActivityNet, and the results demonstrate LiteEval requires substantially less computation while offering excellent classification accuracy for both online and offline predictions.
Author Information
Zuxuan Wu (University of Maryland)
Caiming Xiong (Salesforce)
Yu-Gang Jiang (Fudan University)
Larry Davis (University of Maryland)
More from the Same Authors
-
2022 Poster: OmniVL: One Foundation Model for Image-Language and Video-Language Tasks »
Junke Wang · Dongdong Chen · Zuxuan Wu · Chong Luo · Luowei Zhou · Yucheng Zhao · Yujia Xie · Ce Liu · Yu-Gang Jiang · Lu Yuan -
2022 Spotlight: OmniVL: One Foundation Model for Image-Language and Video-Language Tasks »
Junke Wang · Dongdong Chen · Zuxuan Wu · Chong Luo · Luowei Zhou · Yucheng Zhao · Yujia Xie · Ce Liu · Yu-Gang Jiang · Lu Yuan -
2021 Poster: Encoding Robustness to Image Style via Adversarial Feature Perturbations »
Manli Shu · Zuxuan Wu · Micah Goldblum · Tom Goldstein -
2020 Poster: Towards Theoretically Understanding Why Sgd Generalizes Better Than Adam in Deep Learning »
Pan Zhou · Jiashi Feng · Chao Ma · Caiming Xiong · Steven Chu Hong Hoi · Weinan E -
2020 Poster: Theory-Inspired Path-Regularized Differential Network Architecture Search »
Pan Zhou · Caiming Xiong · Richard Socher · Steven Chu Hong Hoi -
2020 Oral: Theory-Inspired Path-Regularized Differential Network Architecture Search »
Pan Zhou · Caiming Xiong · Richard Socher · Steven Chu Hong Hoi -
2020 Poster: Online Structured Meta-learning »
Huaxiu Yao · Yingbo Zhou · Mehrdad Mahdavi · Zhenhui (Jessie) Li · Richard Socher · Caiming Xiong -
2020 Poster: Towards Understanding Hierarchical Learning: Benefits of Neural Representations »
Minshuo Chen · Yu Bai · Jason Lee · Tuo Zhao · Huan Wang · Caiming Xiong · Richard Socher -
2019 Poster: Keeping Your Distance: Solving Sparse Reward Tasks Using Self-Balancing Shaped Rewards »
Alexander Trott · Stephan Zheng · Caiming Xiong · Richard Socher -
2019 Poster: Adversarial training for free! »
Ali Shafahi · Mahyar Najibi · Mohammad Amin Ghiasi · Zheng Xu · John Dickerson · Christoph Studer · Larry Davis · Gavin Taylor · Tom Goldstein -
2017 Poster: Learned in Translation: Contextualized Word Vectors »
Bryan McCann · James Bradbury · Caiming Xiong · Richard Socher