Timezone: »
Scattering transforms are non-trainable deep convolutional architectures that exploit the multi-scale resolution of a wavelet filter bank to obtain an appropriate representation of data. More importantly, they are proven invariant to translations, and stable to perturbations that are close to translations. This stability property dons the scattering transform with a robustness to small changes in the metric domain of the data. When considering network data, regular convolutions do not hold since the data domain presents an irregular structure given by the network topology. In this work, we extend scattering transforms to network data by using multi-resolution graph wavelets, whose computation can be obtained by means of graph convolutions. Furthermore, we prove that the resulting graph scattering transforms are stable to metric perturbations of the underlying network. This renders graph scattering transforms robust to changes on the network topology, making it particularly useful for cases of transfer learning, topology estimation or time-varying graphs.
Author Information
Fernando Gama (University of Pennsylvania)
I am a Ph.D. candidate at the Electrical and Systems Engineering department of the University of Pennsylvania. My advisor is Prof. Alejandro Ribeiro. I received an Electronic Engineering degree from the School of Engineering of the University of Buenos Aires, Argentina in 2013, and a M. A. in Statistics from the Wharton School in 2017. I have been a visiting researcher at TU Delft in 2017, and a research intern at Facebook Artificial Intelligence Research in 2018. I was awarded with a Fulbright scholarship for international students for 2014-2016. My research interests currently lie on the field of machine learning for network data. More specifically, I am interested in developing collaborative intelligence. The fundamental objective is for a group of entities (modeled as nodes in a graph; could be team of autonomous agents, sensors in a network, sources in a power grid, vehicles in a transportation network) to learn, from data, how to collaboratively accomplish a certain task. The challenge is that the nodes have access only to partial, local information acquired through exchanges with neighboring nodes, but need to coordinate a global solution for the entire team. To tackle this problem, we have been developing tools within the context of graph neural networks (GNNs). We have been focusing on solutions that can be implemented locally on a given graph, exploiting the fact that nodes have computational capabilities. We have also obtained theoretical results on how the performance of GNNs change when the underlying graph changes. This allows to set limits on transfer learning, and time-varying graphs. Currently, we are researching applications to teams of autonomous agents, power grids and wireless networks.
Alejandro Ribeiro (University of Pennsylvania)
Joan Bruna (NYU)
More from the Same Authors
-
2021 : An Extensible Benchmark Suite for Learning to Simulate Physical Systems »
Karl Otness · Arvi Gjoka · Joan Bruna · Daniele Panozzo · Benjamin Peherstorfer · Teseo Schneider · Denis Zorin -
2021 Spotlight: Offline RL Without Off-Policy Evaluation »
David Brandfonbrener · Will Whitney · Rajesh Ranganath · Joan Bruna -
2021 : State Augmented Constrained Reinforcement Learning: Overcoming the Limitations of Learning with Rewards »
Miguel Calvo-Fullana · Santiago Paternain · Alejandro Ribeiro -
2021 : Quantile Filtered Imitation Learning »
David Brandfonbrener · Will Whitney · Rajesh Ranganath · Joan Bruna -
2022 : Convolutional Neural Networks on Manifolds: From Graphs and Back »
Zhiyang Wang · Luana Ruiz · Alejandro Ribeiro -
2022 Poster: Exponential Separations in Symmetric Neural Networks »
Aaron Zweig · Joan Bruna -
2022 Poster: When does return-conditioned supervised learning work for offline reinforcement learning? »
David Brandfonbrener · Alberto Bietti · Jacob Buckman · Romain Laroche · Joan Bruna -
2022 Poster: A Lagrangian Duality Approach to Active Learning »
Juan Elenter · Navid Naderializadeh · Alejandro Ribeiro -
2022 Poster: On Non-Linear operators for Geometric Deep Learning »
Grégoire Sergeant-Perthuis · Jakob Maier · Joan Bruna · Edouard Oyallon -
2022 Poster: coVariance Neural Networks »
Saurabh Sihag · Gonzalo Mateos · Corey McMillan · Alejandro Ribeiro -
2022 Poster: Learning single-index models with shallow neural networks »
Alberto Bietti · Joan Bruna · Clayton Sanford · Min Jae Song -
2021 Poster: On the Sample Complexity of Learning under Geometric Stability »
Alberto Bietti · Luca Venturi · Joan Bruna -
2021 Poster: On the Cryptographic Hardness of Learning Single Periodic Neurons »
Min Jae Song · Ilias Zadik · Joan Bruna -
2021 Poster: Adversarial Robustness with Semi-Infinite Constrained Learning »
Alexander Robey · Luiz Chamon · George J. Pappas · Hamed Hassani · Alejandro Ribeiro -
2021 Poster: Offline RL Without Off-Policy Evaluation »
David Brandfonbrener · Will Whitney · Rajesh Ranganath · Joan Bruna -
2020 Poster: Sinkhorn Natural Gradient for Generative Models »
Zebang Shen · Zhenfu Wang · Alejandro Ribeiro · Hamed Hassani -
2020 Poster: Sinkhorn Barycenter via Functional Gradient Descent »
Zebang Shen · Zhenfu Wang · Alejandro Ribeiro · Hamed Hassani -
2020 Spotlight: Sinkhorn Natural Gradient for Generative Models »
Zebang Shen · Zhenfu Wang · Alejandro Ribeiro · Hamed Hassani -
2020 Poster: A mean-field analysis of two-player zero-sum games »
Carles Domingo-Enrich · Samy Jelassi · Arthur Mensch · Grant Rotskoff · Joan Bruna -
2020 Poster: Can Graph Neural Networks Count Substructures? »
Zhengdao Chen · Lei Chen · Soledad Villar · Joan Bruna -
2020 Poster: Graphon Neural Networks and the Transferability of Graph Neural Networks »
Luana Ruiz · Luiz Chamon · Alejandro Ribeiro -
2020 Session: Orals & Spotlights Track 26: Graph/Relational/Theory »
Joan Bruna · Cassio de Campos -
2020 Poster: IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method »
Yossi Arjevani · Joan Bruna · Bugra Can · Mert Gurbuzbalaban · Stefanie Jegelka · Hongzhou Lin -
2020 Spotlight: IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method »
Yossi Arjevani · Joan Bruna · Bugra Can · Mert Gurbuzbalaban · Stefanie Jegelka · Hongzhou Lin -
2020 Poster: A Dynamical Central Limit Theorem for Shallow Neural Networks »
Zhengdao Chen · Grant Rotskoff · Joan Bruna · Eric Vanden-Eijnden -
2020 Poster: Probably Approximately Correct Constrained Learning »
Luiz Chamon · Alejandro Ribeiro -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 : Surya Ganguli, Yasaman Bahri, Florent Krzakala moderated by Lenka Zdeborova »
Florent Krzakala · Yasaman Bahri · Surya Ganguli · Lenka Zdeborová · Adji Bousso Dieng · Joan Bruna -
2019 : Poster Spotlight 1 »
David Brandfonbrener · Joan Bruna · Tom Zahavy · Haim Kaplan · Yishay Mansour · Nikos Karampatziakis · John Langford · Paul Mineiro · Donghwan Lee · Niao He -
2019 : Opening Remarks »
Reinhard Heckel · Paul Hand · Alex Dimakis · Joan Bruna · Deanna Needell · Richard Baraniuk -
2019 Workshop: Solving inverse problems with deep networks: New architectures, theoretical foundations, and applications »
Reinhard Heckel · Paul Hand · Richard Baraniuk · Joan Bruna · Alex Dimakis · Deanna Needell -
2019 Poster: Gradient Dynamics of Shallow Univariate ReLU Networks »
Francis Williams · Matthew Trager · Daniele Panozzo · Claudio Silva · Denis Zorin · Joan Bruna -
2019 Poster: On the Expressive Power of Deep Polynomial Neural Networks »
Joe Kileel · Matthew Trager · Joan Bruna -
2019 Poster: Finding the Needle in the Haystack with Convolutions: on the benefits of architectural bias »
Stéphane d'Ascoli · Levent Sagun · Giulio Biroli · Joan Bruna -
2019 Poster: On the equivalence between graph isomorphism testing and function approximation with GNNs »
Zhengdao Chen · Soledad Villar · Lei Chen · Joan Bruna -
2019 Poster: Constrained Reinforcement Learning Has Zero Duality Gap »
Santiago Paternain · Luiz Chamon · Miguel Calvo-Fullana · Alejandro Ribeiro -
2018 : Invited Talk 3 »
Joan Bruna -
2018 : Joan Bruna »
Joan Bruna -
2017 Poster: Approximate Supermodularity Bounds for Experimental Design »
Luiz Chamon · Alejandro Ribeiro -
2017 Poster: First-Order Adaptive Sample Size Methods to Reduce Complexity of Empirical Risk Minimization »
Aryan Mokhtari · Alejandro Ribeiro -
2017 Tutorial: Geometric Deep Learning on Graphs and Manifolds »
Michael Bronstein · Joan Bruna · arthur szlam · Xavier Bresson · Yann LeCun -
2016 Poster: Adaptive Newton Method for Empirical Risk Minimization to Statistical Accuracy »
Aryan Mokhtari · Hadi Daneshmand · Aurelien Lucchi · Thomas Hofmann · Alejandro Ribeiro -
2014 Poster: Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation »
Emily Denton · Wojciech Zaremba · Joan Bruna · Yann LeCun · Rob Fergus