Timezone: »
Maximum Likelihood Estimators (MLE) has many good properties. For example, the asymptotic variance of MLE solution attains equality of the asymptotic Cram{\'e}r-Rao lower bound (efficiency bound), which is the minimum possible variance for an unbiased estimator. However, obtaining such MLE solution requires calculating the likelihood function which may not be tractable due to the normalization term of the density model. In this paper, we derive a Discriminative Likelihood Estimator (DLE) from the Kullback-Leibler divergence minimization criterion implemented via density ratio estimation and a Stein operator. We study the problem of model inference using DLE. We prove its consistency and show that the asymptotic variance of its solution can attain the equality of the efficiency bound under mild regularity conditions. We also propose a dual formulation of DLE which can be easily optimized. Numerical studies validate our asymptotic theorems and we give an example where DLE successfully estimates an intractable model constructed using a pre-trained deep neural network.
Author Information
Song Liu (University of Bristol)
I am a lecturer in University of Bristol. Before, I was a Project Assistant Professor in The Institute of Statistical Mathematics, Japan. I got my Doctor of Engineering degree from Tokyo Institute of Technology supervised by Prof. [Masashi Sugiyama](http://www.ms.k.u-tokyo.ac.jp/sugi/) and was awarded The DC2 Fellowship from Japan Society for the Promotion of Science.
Takafumi Kanamori (Tokyo Institute of Technology/RIKEN)
Wittawat Jitkrittum (Max Planck Institute for Intelligent Systems)
Yu Chen (University of Bristol)
More from the Same Authors
-
2021 : Continual Density Ratio Estimation »
Yu Chen · Song Liu · Tom Diethe · Peter Flach -
2022 Poster: Post-hoc estimators for learning to defer to an expert »
Harikrishna Narasimhan · Wittawat Jitkrittum · Aditya Menon · Ankit Rawat · Sanjiv Kumar -
2022 Poster: Estimating the Arc Length of the Optimal ROC Curve and Lower Bounding the Maximal AUC »
Song Liu -
2020 Poster: Learning Kernel Tests Without Data Splitting »
Jonas Kübler · Wittawat Jitkrittum · Bernhard Schölkopf · Krikamol Muandet -
2019 Poster: Kernel Stein Tests for Multiple Model Comparison »
Jen Ning Lim · Makoto Yamada · Bernhard Schölkopf · Wittawat Jitkrittum -
2019 Tutorial: Interpretable Comparison of Distributions and Models »
Wittawat Jitkrittum · Danica J. Sutherland · Arthur Gretton -
2018 Poster: Informative Features for Model Comparison »
Wittawat Jitkrittum · Heishiro Kanagawa · Patsorn Sangkloy · James Hays · Bernhard Schölkopf · Arthur Gretton -
2017 : A Linear-Time Kernel Goodness-of-Fit Test (NIPS best paper) »
Wittawat Jitkrittum -
2017 Poster: A Linear-Time Kernel Goodness-of-Fit Test »
Wittawat Jitkrittum · Wenkai Xu · Zoltan Szabo · Kenji Fukumizu · Arthur Gretton -
2017 Oral: A Linear-Time Kernel Goodness-of-Fit Test »
Wittawat Jitkrittum · Wenkai Xu · Zoltan Szabo · Kenji Fukumizu · Arthur Gretton -
2017 Poster: Trimmed Density Ratio Estimation »
Song Liu · Akiko Takeda · Taiji Suzuki · Kenji Fukumizu -
2016 Oral: Interpretable Distribution Features with Maximum Testing Power »
Wittawat Jitkrittum · Zoltán Szabó · Kacper P Chwialkowski · Arthur Gretton -
2016 Poster: Interpretable Distribution Features with Maximum Testing Power »
Wittawat Jitkrittum · Zoltán Szabó · Kacper P Chwialkowski · Arthur Gretton -
2015 Poster: Bayesian Manifold Learning: The Locally Linear Latent Variable Model (LL-LVM) »
Mijung Park · Wittawat Jitkrittum · Ahmad Qamar · Zoltan Szabo · Lars Buesing · Maneesh Sahani