Timezone: »
Recent progress in natural language generation has raised dual-use concerns. While applications like summarization and translation are positive, the underlying technology also might enable adversaries to generate neural fake news: targeted propaganda that closely mimics the style of real news.
Modern computer security relies on careful threat modeling: identifying potential threats and vulnerabilities from an adversary's point of view, and exploring potential mitigations to these threats. Likewise, developing robust defenses against neural fake news requires us first to carefully investigate and characterize the risks of these models. We thus present a model for controllable text generation called Grover. Given a headline like 'Link Found Between Vaccines and Autism,' Grover can generate the rest of the article; humans find these generations to be more trustworthy than human-written disinformation.
Developing robust verification techniques against generators like Grover is critical. We find that best current discriminators can classify neural fake news from real, human-written, news with 73% accuracy, assuming access to a moderate level of training data. Counterintuitively, the best defense against Grover turns out to be Grover itself, with 92% accuracy, demonstrating the importance of public release of strong generators. We investigate these results further, showing that exposure bias -- and sampling strategies that alleviate its effects -- both leave artifacts that similar discriminators can pick up on. We conclude by discussing ethical issues regarding the technology, and plan to release Grover publicly, helping pave the way for better detection of neural fake news.
Author Information
Rowan Zellers (University of Washington)
Ari Holtzman (University of Washington)
Hannah Rashkin (University of Washington)
Yonatan Bisk (CMU & MSR)
Ali Farhadi (University of Washington, Allen Institute for Artificial Intelligence)
Franziska Roesner (University of Washington)
Yejin Choi (University of Washington)
More from the Same Authors
-
2021 : CommonsenseQA 2.0: Exposing the Limits of AI through Gamification »
Alon Talmor · Ori Yoran · Ronan Le Bras · Chandra Bhagavatula · Yoav Goldberg · Yejin Choi · Jonathan Berant -
2021 : NaturalProofs: Mathematical Theorem Proving in Natural Language »
Sean Welleck · Jiacheng Liu · Ronan Le Bras · Hanna Hajishirzi · Yejin Choi · Kyunghyun Cho -
2021 : Towards Grounded Natural Language Proof Generation »
Sean Welleck · Jiacheng Liu · Yejin Choi -
2021 : Robust fine-tuning of zero-shot models »
Mitchell Wortsman · Gabriel Ilharco · Jong Wook Kim · Mike Li · Hanna Hajishirzi · Ali Farhadi · Hongseok Namkoong · Ludwig Schmidt -
2022 : MAFEA: Multimodal Attribution Framework for Embodied AI »
Vidhi Jain · Jayant Sravan Tamarapalli · Sahiti Yerramilli · Yonatan Bisk -
2022 : Tackling AlfWorld with Action Attention and Common Sense from Language Models »
Yue Wu · So Yeon Min · Yonatan Bisk · Russ Salakhutdinov · Shrimai Prabhumoye -
2022 : Information-Theoretic Evaluation of Free-Text Rationales with Conditional $\mathcal{V}$-Information »
Hanjie Chen · Faeze Brahman · Xiang Ren · Yangfeng Ji · Yejin Choi · Swabha Swayamdipta -
2023 Poster: Stable and low-precision training for large-scale vision-language models »
Mitchell Wortsman · Tim Dettmers · Luke Zettlemoyer · Ari Morcos · Ali Farhadi · Ludwig Schmidt -
2023 Poster: SPRING: Studying Papers and Reasoning to play Games »
Yue Wu · So Yeon Min · Shrimai Prabhumoye · Yonatan Bisk · Russ Salakhutdinov · Amos Azaria · Tom Mitchell · Yuanzhi Li -
2023 Poster: AdANNS: A Framework for Adaptive Semantic Search »
Aniket Rege · Aditya Kusupati · Sharan Ranjit S · Alan Fan · Qingqing Cao · Sham Kakade · Prateek Jain · Ali Farhadi -
2023 Poster: Localized Symbolic Knowledge Distillation for Visual Commonsense Models »
Jae Sung Park · Jack Hessel · Khyathi Chandu · Paul Pu Liang · Ximing Lu · Qiuyuan Huang · Peter West · Jianfeng Gao · Ali Farhadi · Yejin Choi -
2023 Poster: SwiftSage: A Generative Agent with Fast and Slow Thinking for Complex Interactive Tasks »
Bill Yuchen Lin · Yicheng Fu · Karina Yang · Prithviraj (Raj) Ammanabrolu · Faeze Brahman · Shiyu Huang · Chandra Bhagavatula · Yejin Choi · Xiang Ren -
2023 Poster: QLoRA: Efficient Finetuning of Quantized LLMs »
Tim Dettmers · Artidoro Pagnoni · Ari Holtzman · Luke Zettlemoyer -
2023 Poster: Faith and Fate: Limits of Transformers on Compositionality »
Nouha Dziri · Ximing Lu · Melanie Sclar · Xiang (Lorraine) Li · Liwei Jiang · Bill Yuchen Lin · Sean Welleck · Peter West · Chandra Bhagavatula · Ronan Le Bras · Jena Hwang · Soumya Sanyal · Xiang Ren · Allyson Ettinger · Zaid Harchaoui · Yejin Choi -
2023 Poster: Neural Priming for Sample-Efficient Adaptation »
Matthew Wallingford · Vivek Ramanujan · Alex Fang · Aditya Kusupati · Roozbeh Mottaghi · Aniruddha Kembhavi · Ludwig Schmidt · Ali Farhadi -
2023 Poster: SPAE: Semantic Pyramid AutoEncoder for Multimodal Generation with Frozen LLMs »
Lijun Yu · Yong Cheng · Zhiruo Wang · Vivek Kumar · Wolfgang Macherey · Yanping Huang · David Ross · Irfan Essa · Yonatan Bisk · Ming-Hsuan Yang · Kevin Murphy · Alexander Hauptmann · Lu Jiang -
2023 Poster: On the Connection between Pre-training Data Diversity and Fine-tuning Robustness »
Vivek Ramanujan · Thao Nguyen · Sewoong Oh · Ali Farhadi · Ludwig Schmidt -
2023 Poster: Multimodal C4: An Open, Billion-scale Corpus of Images Interleaved with Text »
Wanrong Zhu · Jack Hessel · Anas Awadalla · Samir Yitzhak Gadre · Jesse Dodge · Alex Fang · Youngjae Yu · Ludwig Schmidt · William Yang Wang · Yejin Choi -
2023 Poster: DataComp: In search of the next generation of multimodal datasets »
Samir Yitzhak Gadre · Gabriel Ilharco · Alex Fang · Jonathan Hayase · Georgios Smyrnis · Thao Nguyen · Ryan Marten · Mitchell Wortsman · Dhruba Ghosh · Jieyu Zhang · Eyal Orgad · Rahim Entezari · Giannis Daras · Sarah Pratt · Vivek Ramanujan · Yonatan Bitton · Kalyani Marathe · Stephen Mussmann · Richard Vencu · Mehdi Cherti · Ranjay Krishna · Pang Wei Koh · Olga Saukh · Alexander Ratner · Shuran Song · Hannaneh Hajishirzi · Ali Farhadi · Romain Beaumont · Sewoong Oh · Alex Dimakis · Jenia Jitsev · Yair Carmon · Vaishaal Shankar · Ludwig Schmidt -
2023 Poster: Objaverse-XL: A Colossal Universe of 3D Objects »
Matt Deitke · Ruoshi Liu · Matthew Wallingford · Huong Ngo · Oscar Michel · Aditya Kusupati · Alan Fan · Christian Laforte · Vikram Voleti · Samir Yitzhak Gadre · Eli VanderBilt · Aniruddha Kembhavi · Carl Vondrick · Georgia Gkioxari · Kiana Ehsani · Ludwig Schmidt · Ali Farhadi -
2023 Poster: RealTime QA: What's the Answer Right Now? »
Jungo Kasai · Keisuke Sakaguchi · yoichi takahashi · Ronan Le Bras · Akari Asai · Xinyan Yu · Dragomir Radev · Noah Smith · Yejin Choi · Kentaro Inui -
2023 Oral: DataComp: In search of the next generation of multimodal datasets »
Samir Yitzhak Gadre · Gabriel Ilharco · Alex Fang · Jonathan Hayase · Georgios Smyrnis · Thao Nguyen · Ryan Marten · Mitchell Wortsman · Dhruba Ghosh · Jieyu Zhang · Eyal Orgad · Rahim Entezari · Giannis Daras · Sarah Pratt · Vivek Ramanujan · Yonatan Bitton · Kalyani Marathe · Stephen Mussmann · Richard Vencu · Mehdi Cherti · Ranjay Krishna · Pang Wei Koh · Olga Saukh · Alexander Ratner · Shuran Song · Hannaneh Hajishirzi · Ali Farhadi · Romain Beaumont · Sewoong Oh · Alex Dimakis · Jenia Jitsev · Yair Carmon · Vaishaal Shankar · Ludwig Schmidt -
2023 Oral: QLoRA: Efficient Finetuning of Quantized LLMs »
Tim Dettmers · Artidoro Pagnoni · Ari Holtzman · Luke Zettlemoyer -
2023 Competition: The HomeRobot Open Vocabulary Mobile Manipulation Challenge »
Sriram Yenamandra · Arun Ramachandran · Mukul Khanna · Karmesh Yadav · Devendra Singh Chaplot · Gunjan Chhablani · Alexander Clegg · Theophile Gervet · Vidhi Jain · Ruslan Partsey · Ram Ramrakhya · Andrew Szot · Austin Wang · Tsung-Yen Yang · Aaron Edsinger · Charles Kemp · Binit Shah · Zsolt Kira · Dhruv Batra · Roozbeh Mottaghi · Yonatan Bisk · Chris Paxton -
2023 Workshop: AI meets Moral Philosophy and Moral Psychology: An Interdisciplinary Dialogue about Computational Ethics »
Sydney Levine · Liwei Jiang · Jared Moore · Zhijing Jin · Yejin Choi -
2022 : MAFEA: Multimodal Attribution Framework for Embodied AI »
Vidhi Jain · Jayant Sravan Tamarapalli · Sahiti Yerramilli · Yonatan Bisk -
2022 Poster: Patching open-vocabulary models by interpolating weights »
Gabriel Ilharco · Mitchell Wortsman · Samir Yitzhak Gadre · Shuran Song · Hannaneh Hajishirzi · Simon Kornblith · Ali Farhadi · Ludwig Schmidt -
2022 Poster: COLD Decoding: Energy-based Constrained Text Generation with Langevin Dynamics »
Lianhui Qin · Sean Welleck · Daniel Khashabi · Yejin Choi -
2022 Poster: QUARK: Controllable Text Generation with Reinforced Unlearning »
Ximing Lu · Sean Welleck · Jack Hessel · Liwei Jiang · Lianhui Qin · Peter West · Prithviraj Ammanabrolu · Yejin Choi -
2022 Poster: NaturalProver: Grounded Mathematical Proof Generation with Language Models »
Sean Welleck · Jiacheng Liu · Ximing Lu · Hannaneh Hajishirzi · Yejin Choi -
2022 Poster: Matryoshka Representation Learning »
Aditya Kusupati · Gantavya Bhatt · Aniket Rege · Matthew Wallingford · Aditya Sinha · Vivek Ramanujan · William Howard-Snyder · Kaifeng Chen · Sham Kakade · Prateek Jain · Ali Farhadi -
2021 : Panel Discussion »
Pascal Poupart · Ali Ghodsi · Luke Zettlemoyer · Sameer Singh · Kevin Duh · Yejin Choi · Lu Hou -
2021 : Battling with Larger Models through Grounding and Searching »
Yejin Choi -
2021 Oral: MERLOT: Multimodal Neural Script Knowledge Models »
Rowan Zellers · Ximing Lu · Jack Hessel · Youngjae Yu · Jae Sung Park · Jize Cao · Ali Farhadi · Yejin Choi -
2021 : NaturalProofs: Mathematical Theorem Proving in Natural Language »
Sean Welleck · Jiacheng Liu · Ronan Le Bras · Hanna Hajishirzi · Yejin Choi · Kyunghyun Cho -
2021 Poster: Divergence Frontiers for Generative Models: Sample Complexity, Quantization Effects, and Frontier Integrals »
Lang Liu · Krishna Pillutla · Sean Welleck · Sewoong Oh · Yejin Choi · Zaid Harchaoui -
2021 Poster: MERLOT: Multimodal Neural Script Knowledge Models »
Rowan Zellers · Ximing Lu · Jack Hessel · Youngjae Yu · Jae Sung Park · Jize Cao · Ali Farhadi · Yejin Choi -
2021 Poster: LLC: Accurate, Multi-purpose Learnt Low-dimensional Binary Codes »
Aditya Kusupati · Matthew Wallingford · Vivek Ramanujan · Raghav Somani · Jae Sung Park · Krishna Pillutla · Prateek Jain · Sham Kakade · Ali Farhadi -
2021 Poster: MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers »
Krishna Pillutla · Swabha Swayamdipta · Rowan Zellers · John Thickstun · Sean Welleck · Yejin Choi · Zaid Harchaoui -
2021 : CommonsenseQA 2.0: Exposing the Limits of AI through Gamification »
Alon Talmor · Ori Yoran · Ronan Le Bras · Chandra Bhagavatula · Yoav Goldberg · Yejin Choi · Jonathan Berant -
2021 Oral: MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers »
Krishna Pillutla · Swabha Swayamdipta · Rowan Zellers · John Thickstun · Sean Welleck · Yejin Choi · Zaid Harchaoui -
2020 : Panel Discussion & Closing »
Yejin Choi · Alexei Efros · Chelsea Finn · Kristen Grauman · Quoc V Le · Yann LeCun · Ruslan Salakhutdinov · Eric Xing -
2020 : QA: Yejin Choi »
Yejin Choi -
2020 : Invited Talk: Yejin Choi »
Yejin Choi -
2020 : Adversarial, Socially Aware, and Commonsensical Data »
Yejin Choi -
2020 Workshop: Workshop on Dataset Curation and Security »
Nathalie Baracaldo · Yonatan Bisk · Avrim Blum · Michael Curry · John Dickerson · Micah Goldblum · Tom Goldstein · Bo Li · Avi Schwarzschild -
2019 : Invited Talk (Yejin Choi) »
Yejin Choi -
2019 : Yejin Choi »
Yejin Choi -
2019 Poster: Discovering Neural Wirings »
Mitchell Wortsman · Ali Farhadi · Mohammad Rastegari -
2018 Workshop: Wordplay: Reinforcement and Language Learning in Text-based Games »
Adam Trischler · Angeliki Lazaridou · Yonatan Bisk · Wendy Tay · Nate Kushman · Marc-Alexandre Côté · Alessandro Sordoni · Daniel Ricks · Tom Zahavy · Hal Daumé III