Timezone: »
Metric Elicitation is a principled framework for selecting the performance metric that best reflects implicit user preferences. However, available strategies have so far been limited to binary classification. In this paper, we propose novel strategies for eliciting multiclass classification performance metrics using only relative preference feedback. We also show that the strategies are robust to both finite sample and feedback noise.
Author Information
Gaurush Hiranandani (University of Illinois at Urbana-Champaign)
Shant Boodaghians (UIUC)
Ruta Mehta (UIUC)
Sanmi Koyejo (UIUC)
Sanmi (Oluwasanmi) Koyejo an Assistant Professor in the Department of Computer Science at the University of Illinois at Urbana-Champaign. Koyejo's research interests are in the development and analysis of probabilistic and statistical machine learning techniques motivated by, and applied to various modern big data problems. He is particularly interested in the analysis of large scale neuroimaging data. Koyejo completed his Ph.D in Electrical Engineering at the University of Texas at Austin advised by Joydeep Ghosh, and completed postdoctoral research at Stanford University with a focus on developing Machine learning techniques for neuroimaging data. His postdoctoral research was primarily with Russell A. Poldrack and Pradeep Ravikumar. Koyejo has been the recipient of several awards including the outstanding NCE/ECE student award, a best student paper award from the conference on uncertainty in artificial intelligence (UAI) and a trainee award from the Organization for Human Brain Mapping (OHBM).
More from the Same Authors
-
2021 : Probabilistic Performance Metric Elicitation »
Zachary Robertson · Hantao Zhang · Sanmi Koyejo -
2021 : Robust and Personalized Federated Learning with Spurious Features: an Adversarial Approach »
Xiaoyang Wang · Han Zhao · Klara Nahrstedt · Sanmi Koyejo -
2021 : RVFR: Robust Vertical Federated Learning via Feature Subspace Recovery »
Jing Liu · Chulin Xie · Krishnaram Kenthapadi · Sanmi Koyejo · Bo Li -
2021 : Secure Byzantine-Robust Distributed Learning via Clustering »
Raj Kiriti Velicheti · Sanmi Koyejo -
2021 : Exploiting Causal Chains for Domain Generalization »
Olawale Salaudeen · Sanmi Koyejo -
2021 : Distribution Preserving Bayesian Coresets using Set Constraints »
Shovik Guha · Rajiv Khanna · Sanmi Koyejo -
2020 Poster: CSER: Communication-efficient SGD with Error Reset »
Cong Xie · Shuai Zheng · Sanmi Koyejo · Indranil Gupta · Mu Li · Haibin Lin -
2020 Poster: Fairness with Overlapping Groups; a Probabilistic Perspective »
Forest Yang · Mouhamadou M Cisse · Sanmi Koyejo -
2020 Poster: Fair Performance Metric Elicitation »
Gaurush Hiranandani · Harikrishna Narasimhan · Sanmi Koyejo -
2019 : Poster session »
Sebastian Farquhar · Erik Daxberger · Andreas Look · Matt Benatan · Ruiyi Zhang · Marton Havasi · Fredrik Gustafsson · James A Brofos · Nabeel Seedat · Micha Livne · Ivan Ustyuzhaninov · Adam Cobb · Felix D McGregor · Patrick McClure · Tim R. Davidson · Gaurush Hiranandani · Sanjeev Arora · Mikhal Itkina · Didrik Nielsen · William Harvey · Matias Valdenegro-Toro · Stefano Peluchetti · Riccardo Moriconi · Tianyu Cui · Vaclav Smidl · Taylan Cemgil · Jack Fitzsimons · He Zhao · · mariana vargas vieyra · Apratim Bhattacharyya · Rahul Sharma · Geoffroy Dubourg-Felonneau · Jonathan Warrell · Slava Voloshynovskiy · Mihaela Rosca · Jiaming Song · Andrew Ross · Homa Fashandi · Ruiqi Gao · Hooshmand Shokri Razaghi · Joshua Chang · Zhenzhong Xiao · Vanessa Boehm · Giorgio Giannone · Ranganath Krishnan · Joe Davison · Arsenii Ashukha · Jeremiah Liu · Sicong (Sheldon) Huang · Evgenii Nikishin · Sunho Park · Nilesh Ahuja · Mahesh Subedar · · Artyom Gadetsky · Jhosimar Arias Figueroa · Tim G. J. Rudner · Waseem Aslam · Adrián Csiszárik · John Moberg · Ali Hebbal · Kathrin Grosse · Pekka Marttinen · Bang An · Hlynur Jónsson · Samuel Kessler · Abhishek Kumar · Mikhail Figurnov · Omesh Tickoo · Steindor Saemundsson · Ari Heljakka · Dániel Varga · Niklas Heim · Simone Rossi · Max Laves · Waseem Gharbieh · Nicholas Roberts · Luis Armando Pérez Rey · Matthew Willetts · Prithvijit Chakrabarty · Sumedh Ghaisas · Carl Shneider · Wray Buntine · Kamil Adamczewski · Xavier Gitiaux · Suwen Lin · Hao Fu · Gunnar Rätsch · Aidan Gomez · Erik Bodin · Dinh Phung · Lennart Svensson · Juliano Tusi Amaral Laganá Pinto · Milad Alizadeh · Jianzhun Du · Kevin Murphy · Beatrix Benkő · Shashaank Vattikuti · Jonathan Gordon · Christopher Kanan · Sontje Ihler · Darin Graham · Michael Teng · Louis Kirsch · Tomas Pevny · Taras Holotyak -
2019 Poster: Learning Sparse Distributions using Iterative Hard Thresholding »
Jacky Zhang · Rajiv Khanna · Anastasios Kyrillidis · Sanmi Koyejo -
2019 Tutorial: Representation Learning and Fairness »
Moustapha Cisse · Sanmi Koyejo -
2016 Oral: Examples are not enough, learn to criticize! Criticism for Interpretability »
Been Kim · Sanmi Koyejo · Rajiv Khanna -
2016 Poster: Generalized Correspondence-LDA Models (GC-LDA) for Identifying Functional Regions in the Brain »
Timothy Rubin · Sanmi Koyejo · Michael Jones · Tal Yarkoni -
2016 Poster: Preference Completion from Partial Rankings »
Suriya Gunasekar · Sanmi Koyejo · Joydeep Ghosh -
2016 Poster: Examples are not enough, learn to criticize! Criticism for Interpretability »
Been Kim · Sanmi Koyejo · Rajiv Khanna -
2015 Poster: Consistent Multilabel Classification »
Oluwasanmi Koyejo · Nagarajan Natarajan · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: On Prior Distributions and Approximate Inference for Structured Variables »
Sanmi Koyejo · Rajiv Khanna · Joydeep Ghosh · Russell Poldrack -
2014 Poster: Consistent Binary Classification with Generalized Performance Metrics »
Sanmi Koyejo · Nagarajan Natarajan · Pradeep Ravikumar · Inderjit Dhillon -
2014 Spotlight: Consistent Binary Classification with Generalized Performance Metrics »
Sanmi Koyejo · Nagarajan Natarajan · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: Sparse Bayesian structure learning with dependent relevance determination prior »
Anqi Wu · Mijung Park · Sanmi Koyejo · Jonathan W Pillow