Timezone: »
Minimizing a non-smooth function over the Grassmannian appears in many applications in machine learning. In this paper we show that if the objective satisfies a certain Riemannian regularity condition with respect to some point in the Grassmannian, then a Riemannian subgradient method with appropriate initialization and geometrically diminishing step size converges at a linear rate to that point. We show that for both the robust subspace learning method Dual Principal Component Pursuit (DPCP) and the Orthogonal Dictionary Learning (ODL) problem, the Riemannian regularity condition is satisfied with respect to appropriate points of interest, namely the subspace orthogonal to the sought subspace for DPCP and the orthonormal dictionary atoms for ODL. Consequently, we obtain in a unified framework significant improvements for the convergence theory of both methods.
Author Information
Zhihui Zhu (Johns Hopkins University)
Tianyu Ding (Johns Hopkins University)
Daniel Robinson (Johns Hopkins University)
Manolis Tsakiris (ShanghaiTech University)
René Vidal (Mathematical Institute for Data Science Johns Hopkins University)
More from the Same Authors
-
2021 Spotlight: A Geometric Analysis of Neural Collapse with Unconstrained Features »
Zhihui Zhu · Tianyu Ding · Jinxin Zhou · Xiao Li · Chong You · Jeremias Sulam · Qing Qu -
2023 : Invariant Low-Dimensional Subspaces in Gradient Descent for Learning Deep Matrix Factorizations »
Can Yaras · Peng Wang · Wei Hu · Zhihui Zhu · Laura Balzano · Qing Qu -
2022 Poster: Neural Collapse with Normalized Features: A Geometric Analysis over the Riemannian Manifold »
Can Yaras · Peng Wang · Zhihui Zhu · Laura Balzano · Qing Qu -
2022 Poster: Are All Losses Created Equal: A Neural Collapse Perspective »
Jinxin Zhou · Chong You · Xiao Li · Kangning Liu · Sheng Liu · Qing Qu · Zhihui Zhu -
2022 Poster: Error Analysis of Tensor-Train Cross Approximation »
Zhen Qin · Alexander Lidiak · Zhexuan Gong · Gongguo Tang · Michael B Wakin · Zhihui Zhu -
2022 Poster: Revisiting Sparse Convolutional Model for Visual Recognition »
xili dai · Mingyang Li · Pengyuan Zhai · Shengbang Tong · Xingjian Gao · Shao-Lun Huang · Zhihui Zhu · Chong You · Yi Ma -
2021 Poster: Unlabeled Principal Component Analysis »
Yunzhen Yao · Liangzu Peng · Manolis Tsakiris -
2021 Poster: A Geometric Analysis of Neural Collapse with Unconstrained Features »
Zhihui Zhu · Tianyu Ding · Jinxin Zhou · Xiao Li · Chong You · Jeremias Sulam · Qing Qu -
2021 Poster: Only Train Once: A One-Shot Neural Network Training And Pruning Framework »
Tianyi Chen · Bo Ji · Tianyu Ding · Biyi Fang · Guanyi Wang · Zhihui Zhu · Luming Liang · Yixin Shi · Sheng Yi · Xiao Tu -
2021 Poster: Rank Overspecified Robust Matrix Recovery: Subgradient Method and Exact Recovery »
Lijun Ding · Liwei Jiang · Yudong Chen · Qing Qu · Zhihui Zhu -
2021 Poster: Convolutional Normalization: Improving Deep Convolutional Network Robustness and Training »
Sheng Liu · Xiao Li · Simon Zhai · Chong You · Zhihui Zhu · Carlos Fernandez-Granda · Qing Qu -
2020 Poster: Conformal Symplectic and Relativistic Optimization »
Guilherme Franca · Jeremias Sulam · Daniel Robinson · Rene Vidal -
2020 Spotlight: Conformal Symplectic and Relativistic Optimization »
Guilherme Franca · Jeremias Sulam · Daniel Robinson · Rene Vidal -
2020 Poster: Robust Recovery via Implicit Bias of Discrepant Learning Rates for Double Over-parameterization »
Chong You · Zhihui Zhu · Qing Qu · Yi Ma -
2020 Spotlight: Robust Recovery via Implicit Bias of Discrepant Learning Rates for Double Over-parameterization »
Chong You · Zhihui Zhu · Qing Qu · Yi Ma -
2019 : Keynote I – Rene Vidal (Johns Hopkins University) »
René Vidal -
2019 Poster: Distributed Low-rank Matrix Factorization With Exact Consensus »
Zhihui Zhu · Qiuwei Li · Xinshuo Yang · Gongguo Tang · Michael B Wakin -
2019 Poster: A Nonconvex Approach for Exact and Efficient Multichannel Sparse Blind Deconvolution »
Qing Qu · Xiao Li · Zhihui Zhu -
2019 Spotlight: A Nonconvex Approach for Exact and Efficient Multichannel Sparse Blind Deconvolution »
Qing Qu · Xiao Li · Zhihui Zhu -
2018 Poster: Dual Principal Component Pursuit: Improved Analysis and Efficient Algorithms »
Zhihui Zhu · Yifan Wang · Daniel Robinson · Daniel Naiman · René Vidal · Manolis Tsakiris -
2018 Poster: Dropping Symmetry for Fast Symmetric Nonnegative Matrix Factorization »
Zhihui Zhu · Xiao Li · Kai Liu · Qiuwei Li -
2012 Poster: Finding Exemplars from Pairwise Dissimilarities via Simultaneous Sparse Recovery »
Ehsan Elhamifar · Guillermo Sapiro · René Vidal -
2011 Poster: Sparse Manifold Clustering and Embedding »
Ehsan Elhamifar · René Vidal -
2006 Poster: Online Clustering of Moving Subspaces »
René Vidal