Poster
ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models
Andrei Barbu · David Mayo · Julian Alverio · William Luo · Christopher Wang · Dan Gutfreund · Josh Tenenbaum · Boris Katz

Thu Dec 12th 05:00 -- 07:00 PM @ East Exhibition Hall B + C #177

We collect a large real-world test set, ObjectNet, for object recognition with controls where object backgrounds, rotations, and imaging viewpoints are random. Most scientific experiments have controls, confounds which are removed from the data, to ensure that subjects cannot perform a task by exploiting trivial correlations in the data. Historically, large machine learning and computer vision datasets have lacked such controls. This has resulted in models that must be fine-tuned for new datasets and perform better on datasets than in real-world applications. When tested on ObjectNet, object detectors show a 40-45% drop in performance, with respect to their performance on other benchmarks, due to the controls for biases. Controls make ObjectNet robust to fine-tuning showing only small performance increases. We develop a highly automated platform that enables gathering datasets with controls by crowdsourcing image capturing and annotation. ObjectNet is the same size as the ImageNet test set (50,000 images), and by design does not come paired with a training set in order to encourage generalization. The dataset is both easier than ImageNet (objects are largely centered and unoccluded) and harder (due to the controls). Although we focus on object recognition here, data with controls can be gathered at scale using automated tools throughout machine learning to generate datasets that exercise models in new ways thus providing valuable feedback to researchers. This work opens up new avenues for research in generalizable, robust, and more human-like computer vision and in creating datasets where results are predictive of real-world performance.

Author Information

Andrei Barbu (MIT)
David Mayo (MIT)
Julian Alverio (MIT)
William Luo (MIT)
Chris Wang (Massachusetts Institute of Technology)
Dan Gutfreund (IBM Research)
Josh Tenenbaum (MIT)

Josh Tenenbaum is an Associate Professor of Computational Cognitive Science at MIT in the Department of Brain and Cognitive Sciences and the Computer Science and Artificial Intelligence Laboratory (CSAIL). He received his PhD from MIT in 1999, and was an Assistant Professor at Stanford University from 1999 to 2002. He studies learning and inference in humans and machines, with the twin goals of understanding human intelligence in computational terms and bringing computers closer to human capacities. He focuses on problems of inductive generalization from limited data -- learning concepts and word meanings, inferring causal relations or goals -- and learning abstract knowledge that supports these inductive leaps in the form of probabilistic generative models or 'intuitive theories'. He has also developed several novel machine learning methods inspired by human learning and perception, most notably Isomap, an approach to unsupervised learning of nonlinear manifolds in high-dimensional data. He has been Associate Editor for the journal Cognitive Science, has been active on program committees for the CogSci and NIPS conferences, and has co-organized a number of workshops, tutorials and summer schools in human and machine learning. Several of his papers have received outstanding paper awards or best student paper awards at the IEEE Computer Vision and Pattern Recognition (CVPR), NIPS, and Cognitive Science conferences. He is the recipient of the New Investigator Award from the Society for Mathematical Psychology (2005), the Early Investigator Award from the Society of Experimental Psychologists (2007), and the Distinguished Scientific Award for Early Career Contribution to Psychology (in the area of cognition and human learning) from the American Psychological Association (2008).

Boris Katz (MIT)

More from the Same Authors