Timezone: »
Humans and other animals are frequently near-optimal in their ability to integrate noisy and ambiguous sensory data to form robust percepts---which are informed both by sensory evidence and by prior expectations about the structure of the environment. It is suggested that the brain does so using the statistical structure provided by an internal model of how latent, causal factors produce the observed patterns. In dynamic environments, such integration often takes the form of \emph{postdiction}, wherein later sensory evidence affects inferences about earlier percepts. As the brain must operate in current time, without the luxury of acausal propagation of information, how does such postdictive inference come about? Here, we propose a general framework for neural probabilistic inference in dynamic models based on the distributed distributional code (DDC) representation of uncertainty, naturally extending the underlying encoding to incorporate implicit probabilistic beliefs about both present and past. We show that, as in other uses of the DDC, an inferential model can be learnt efficiently using samples from an internal model of the world. Applied to stimuli used in the context of psychophysics experiments, the framework provides an online and plausible mechanism for inference, including postdictive effects.
Author Information
Li Kevin Wenliang (Gatsby Unit, UCL)
Maneesh Sahani (Gatsby Unit, UCL)
More from the Same Authors
-
2021 Spotlight: Probabilistic Tensor Decomposition of Neural Population Spiking Activity »
Hugo Soulat · Sepiedeh Keshavarzi · Troy Margrie · Maneesh Sahani -
2021 : Blindness of score-based methods to isolated components and mixing proportions »
Li Kevin Wenliang · Heishiro Kanagawa -
2022 : Score-based generative model learnmanifold-like structures with constrained mixing »
Li Kevin Wenliang · Ben Moran -
2022 Poster: Structured Recognition for Generative Models with Explaining Away »
Changmin Yu · Hugo Soulat · Neil Burgess · Maneesh Sahani -
2021 Poster: Probabilistic Tensor Decomposition of Neural Population Spiking Activity »
Hugo Soulat · Sepiedeh Keshavarzi · Troy Margrie · Maneesh Sahani -
2020 Poster: Non-reversible Gaussian processes for identifying latent dynamical structure in neural data »
Virginia Rutten · Alberto Bernacchia · Maneesh Sahani · Guillaume Hennequin -
2020 Oral: Non-reversible Gaussian processes for identifying latent dynamical structure in neural data »
Virginia Rutten · Alberto Bernacchia · Maneesh Sahani · Guillaume Hennequin -
2020 Poster: Organizing recurrent network dynamics by task-computation to enable continual learning »
Lea Duncker · Laura N Driscoll · Krishna V Shenoy · Maneesh Sahani · David Sussillo -
2020 Poster: COT-GAN: Generating Sequential Data via Causal Optimal Transport »
Tianlin Xu · Li Kevin Wenliang · Michael Munn · Beatrice Acciaio -
2019 Poster: A neurally plausible model learns successor representations in partially observable environments »
Eszter Vértes · Maneesh Sahani -
2019 Oral: A neurally plausible model learns successor representations in partially observable environments »
Eszter Vértes · Maneesh Sahani -
2019 Poster: Kernel Instrumental Variable Regression »
Rahul Singh · Maneesh Sahani · Arthur Gretton -
2019 Oral: Kernel Instrumental Variable Regression »
Rahul Singh · Maneesh Sahani · Arthur Gretton -
2018 Poster: Flexible and accurate inference and learning for deep generative models »
Eszter Vértes · Maneesh Sahani -
2018 Poster: Temporal alignment and latent Gaussian process factor inference in population spike trains »
Lea Duncker · Maneesh Sahani -
2015 Poster: Bayesian Manifold Learning: The Locally Linear Latent Variable Model (LL-LVM) »
Mijung Park · Wittawat Jitkrittum · Ahmad Qamar · Zoltan Szabo · Lars Buesing · Maneesh Sahani -
2013 Workshop: Acquiring and Analyzing the Activity of Large Neural Ensembles »
Srinivas C Turaga · Lars Buesing · Maneesh Sahani · Jakob H Macke -
2013 Poster: Extracting regions of interest from biological images with convolutional sparse block coding »
Marius Pachitariu · Adam M Packer · Noah Pettit · Henry Dalgleish · Michael Hausser · Maneesh Sahani -
2013 Poster: Recurrent linear models of simultaneously-recorded neural populations »
Marius Pachitariu · Biljana Petreska · Maneesh Sahani -
2013 Spotlight: Recurrent linear models of simultaneously-recorded neural populations »
Marius Pachitariu · Biljana Petreska · Maneesh Sahani -
2012 Poster: Spectral learning of linear dynamics from generalised-linear observations with application to neural population data »
Lars Buesing · Jakob H Macke · Maneesh Sahani -
2012 Oral: Spectral learning of linear dynamics from generalised-linear observations with application to neural population data »
Lars Buesing · Jakob H Macke · Maneesh Sahani -
2012 Poster: Learning visual motion in recurrent neural networks »
Marius Pachitariu · Maneesh Sahani -
2011 Oral: Empirical models of spiking in neural populations »
Jakob H Macke · Lars Buesing · John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2011 Poster: Empirical models of spiking in neural populations »
Jakob H Macke · Lars Buesing · John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2011 Poster: Dynamical segmentation of single trials from population neural data »
Biljana Petreska · Byron M Yu · John P Cunningham · Gopal Santhanam · Stephen I Ryu · Krishna V Shenoy · Maneesh Sahani -
2011 Poster: Probabilistic amplitude and frequency demodulation »
Richard Turner · Maneesh Sahani -
2011 Spotlight: Probabilistic amplitude and frequency demodulation »
Richard Turner · Maneesh Sahani -
2010 Session: The Sam Roweis Symposium »
Maneesh Sahani -
2009 Poster: Occlusive Components Analysis »
Jörg Lücke · Richard Turner · Maneesh Sahani · Marc Henniges -
2008 Poster: Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity »
Byron M Yu · John P Cunningham · Gopal Santhanam · Stephen I Ryu · Krishna V Shenoy · Maneesh Sahani -
2007 Workshop: Beyond Simple Cells: Probabilistic Models for Visual Cortical Processing »
Richard Turner · Pietro Berkes · Maneesh Sahani -
2007 Oral: Inferring Elapsed Time from Stochastic Neural Processes »
Misha B Ahrens · Maneesh Sahani -
2007 Spotlight: Inferring Neural Firing Rates from Spike Trains Using Gaussian Processes »
John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2007 Poster: Inferring Neural Firing Rates from Spike Trains Using Gaussian Processes »
John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2007 Poster: Inferring Elapsed Time from Stochastic Neural Processes »
Misha B Ahrens · Maneesh Sahani -
2007 Poster: Modeling Natural Sounds with Modulation Cascade Processes »
Richard Turner · Maneesh Sahani -
2007 Poster: On Sparsity and Overcompleteness in Image Models »
Pietro Berkes · Richard Turner · Maneesh Sahani