Timezone: »
Many time series are effectively generated by a combination of deterministic continuous flows along with discrete jumps sparked by stochastic events. However, we usually do not have the equation of motion describing the flows, or how they are affected by jumps. To this end, we introduce Neural Jump Stochastic Differential Equations that provide a data-driven approach to learn continuous and discrete dynamic behavior, i.e., hybrid systems that both flow and jump. Our approach extends the framework of Neural Ordinary Differential Equations with a stochastic process term that models discrete events. We then model temporal point processes with a piecewise-continuous latent trajectory, where the discontinuities are caused by stochastic events whose conditional intensity depends on the latent state. We demonstrate the predictive capabilities of our model on a range of synthetic and real-world marked point process datasets, including classical point processes (such as Hawkes processes), awards on Stack Overflow, medical records, and earthquake monitoring.
Author Information
Junteng Jia (Cornell)
Austin Benson (Cornell University)
More from the Same Authors
-
2022 Poster: Understanding Non-linearity in Graph Neural Networks from the Bayesian-Inference Perspective »
Rongzhe Wei · Haoteng YIN · Junteng Jia · Austin Benson · Pan Li -
2021 Poster: Approximate Decomposable Submodular Function Minimization for Cardinality-Based Components »
Nate Veldt · Austin Benson · Jon Kleinberg -
2020 Poster: Better Set Representations For Relational Reasoning »
Qian Huang · Horace He · Abhay Singh · Yan Zhang · Ser Nam Lim · Austin Benson -
2020 Poster: Entrywise convergence of iterative methods for eigenproblems »
Vasileios Charisopoulos · Austin Benson · Anil Damle -
2018 Poster: Found Graph Data and Planted Vertex Covers »
Austin Benson · Jon Kleinberg -
2016 Poster: General Tensor Spectral Co-clustering for Higher-Order Data »
Tao Wu · Austin Benson · David Gleich -
2015 : Beyond Nodes and Edges: Multiresolution Models of Complex Networks »
Austin Benson -
2014 Poster: Scalable Methods for Nonnegative Matrix Factorizations of Near-separable Tall-and-skinny Matrices »
Austin Benson · Jason D Lee · Bartek Rajwa · David F Gleich -
2014 Spotlight: Scalable Methods for Nonnegative Matrix Factorizations of Near-separable Tall-and-skinny Matrices »
Austin Benson · Jason D Lee · Bartek Rajwa · David F Gleich