Timezone: »
Vulnerability identification is crucial to protect the software systems from attacks for cyber security. It is especially important to localize the vulnerable functions among the source code to facilitate the fix. However, it is a challenging and tedious process, and also requires specialized security expertise. Inspired by the work on manually-defined patterns of vulnerabilities from various code representation graphs and the recent advance on graph neural networks, we propose Devign, a general graph neural network based model for graph-level classification through learning on a rich set of code semantic representations. It includes a novel Conv module to efficiently extract useful features in the learned rich node representations for graph-level classification. The model is trained over manually labeled datasets built on 4 diversified large-scale open-source C projects that incorporate high complexity and variety of real source code instead of synthesis code used in previous works. The results of the extensive evaluation on the datasets demonstrate that Devign outperforms the state of the arts significantly with an average of 10.51% higher accuracy and 8.68% F1 score, increases averagely 4.66% accuracy and 6.37% F1 by the Conv module.
Author Information
Yaqin Zhou (Nanyang Technological University)
Shangqing Liu (Nanyang Technological University)
Jingkai Siow (Nanyang Technological University)
Xiaoning Du (Nanyang Technological University)
Yang Liu (Nanyang Technology University, Singapore)
More from the Same Authors
-
2022 Spotlight: Lightning Talks 5A-3 »
Minting Pan · Xiang Chen · Wenhan Huang · Can Chang · Zhecheng Yuan · Jianzhun Shao · Yushi Cao · Peihao Chen · Ke Xue · Zhengrong Xue · Zhiqiang Lou · Xiangming Zhu · Lei Li · Zhiming Li · Kai Li · Jiacheng Xu · Dongyu Ji · Ni Mu · Kun Shao · Tianpei Yang · Kunyang Lin · Ningyu Zhang · Yunbo Wang · Lei Yuan · Bo Yuan · Hongchang Zhang · Jiajun Wu · Tianze Zhou · Xueqian Wang · Ling Pan · Yuhang Jiang · Xiaokang Yang · Xiaozhuan Liang · Hao Zhang · Weiwen Hu · Miqing Li · YAN ZHENG · Matthew Taylor · Huazhe Xu · Shumin Deng · Chao Qian · YI WU · Shuncheng He · Wenbing Huang · Chuanqi Tan · Zongzhang Zhang · Yang Gao · Jun Luo · Yi Li · Xiangyang Ji · Thomas Li · Mingkui Tan · Fei Huang · Yang Yu · Huazhe Xu · Dongge Wang · Jianye Hao · Chuang Gan · Yang Liu · Luo Si · Hangyu Mao · Huajun Chen · Jianye Hao · Jun Wang · Xiaotie Deng -
2022 Spotlight: GALOIS: Boosting Deep Reinforcement Learning via Generalizable Logic Synthesis »
Yushi Cao · Zhiming Li · Tianpei Yang · Hao Zhang · YAN ZHENG · Yi Li · Jianye Hao · Yang Liu -
2022 Poster: GALOIS: Boosting Deep Reinforcement Learning via Generalizable Logic Synthesis »
Yushi Cao · Zhiming Li · Tianpei Yang · Hao Zhang · YAN ZHENG · Yi Li · Jianye Hao · Yang Liu -
2020 Poster: Watch out! Motion is Blurring the Vision of Your Deep Neural Networks »
Qing Guo · Felix Juefei-Xu · Xiaofei Xie · Lei Ma · Jian Wang · Bing Yu · Wei Feng · Yang Liu