Timezone: »
Learning the probability distribution of high-dimensional data is a challenging problem. To solve this problem, we formulate a deep energy adversarial network (DEAN), which casts the energy model learned from real data into an optimization of a goodness-of-fit (GOF) test statistic. DEAN can be interpreted as a GOF game between two generative networks, where one explicit generative network learns an energy-based distribution that fits the real data, and the other implicit generative network is trained by minimizing a GOF test statistic between the energy-based distribution and the generated data, such that the underlying distribution of the generated data is close to the energy-based distribution. We design a two-level alternative optimization procedure to train the explicit and implicit generative networks, such that the hyper-parameters can also be automatically learned. Experimental results show that DEAN achieves high quality generations compared to the state-of-the-art approaches.
Author Information
Lizhong Ding (Inception Institute of Artificial Intelligence)
Mengyang Yu (Inception Institute of Artificial Intelligence)
Li Liu (Inception Institute of Artificial Intelligence)
Fan Zhu (Inception Institute of Artificial Intelligence)
Yong Liu (Institute of Information Engineering, CAS)
Yu Li (King Abdullah University of Science and Technology)
Ling Shao (Inception Institute of Artificial Intelligence)
More from the Same Authors
-
2022 Poster: PolarMix: A General Data Augmentation Technique for LiDAR Point Clouds »
Aoran Xiao · Jiaxing Huang · Dayan Guan · Kaiwen Cui · Shijian Lu · Ling Shao -
2021 Poster: You Never Cluster Alone »
Yuming Shen · Ziyi Shen · Menghan Wang · Jie Qin · Philip Torr · Ling Shao -
2021 Poster: TransMatcher: Deep Image Matching Through Transformers for Generalizable Person Re-identification »
Shengcai Liao · Ling Shao -
2021 Poster: Variational Multi-Task Learning with Gumbel-Softmax Priors »
Jiayi Shen · Xiantong Zhen · Marcel Worring · Ling Shao -
2021 Poster: HSVA: Hierarchical Semantic-Visual Adaptation for Zero-Shot Learning »
Shiming Chen · Guosen Xie · Yang Liu · Qinmu Peng · Baigui Sun · Hao Li · Xinge You · Ling Shao -
2020 Poster: Learning to Learn Variational Semantic Memory »
Xiantong Zhen · Yingjun Du · Huan Xiong · Qiang Qiu · Cees Snoek · Ling Shao -
2020 Poster: Human Parsing Based Texture Transfer from Single Image to 3D Human via Cross-View Consistency »
Fang Zhao · Shengcai Liao · Kaihao Zhang · Ling Shao -
2018 Poster: Multi-Class Learning: From Theory to Algorithm »
Jian Li · Yong Liu · Rong Yin · Hua Zhang · Lizhong Ding · Weiping Wang