Timezone: »
We propose a scalable framework for inference in a continuous sigmoidal Cox process that assumes the corresponding intensity function is given by a Gaussian process (GP) prior transformed with a scaled logistic sigmoid function. We present a tractable representation of the likelihood through augmentation with a superposition of Poisson processes. This view enables a structured variational approximation capturing dependencies across variables in the model. Our framework avoids discretization of the domain, does not require accurate numerical integration over the input space and is not limited to GPs with squared exponential kernels. We evaluate our approach on synthetic and real-world data showing that its benefits are particularly pronounced on multivariate input settings where it overcomes the limitations of mean-field methods and sampling schemes. We provide the state of-the-art in terms of speed, accuracy and uncertainty quantification trade-offs.
Author Information
Virginia Aglietti (University of Warwick)
Edwin Bonilla (CSIRO's Data61)
Theodoros Damoulas (University of Warwick & The Alan Turing Institute)
Sally Cripps (University of Sydney)
More from the Same Authors
-
2020 : Scalable Multitask Latent Force Models with Applications to Predicting Lithium-ion Concentration »
Daniel Tait · Ferran Brosa Planella · Widanalage Dhammika Widanage · Theodoros Damoulas -
2021 : Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap »
Harita Dellaporta · Jeremias Knoblauch · Theodoros Damoulas · Francois-Xavier Briol -
2022 Poster: Fixed-Distance Hamiltonian Monte Carlo »
Hadi Mohasel Afshar · Sally Cripps -
2021 Poster: Dynamic Causal Bayesian Optimization »
Virginia Aglietti · Neil Dhir · Javier González · Theodoros Damoulas -
2021 Poster: Higher Order Kernel Mean Embeddings to Capture Filtrations of Stochastic Processes »
Cristopher Salvi · Maud Lemercier · Chong Liu · Blanka Horvath · Theodoros Damoulas · Terry Lyons -
2021 Poster: Spatio-Temporal Variational Gaussian Processes »
Oliver Hamelijnck · William Wilkinson · Niki Loppi · Arno Solin · Theodoros Damoulas -
2020 Poster: Generalised Bayesian Filtering via Sequential Monte Carlo »
Ayman Boustati · Omer Deniz Akyildiz · Theodoros Damoulas · Adam Johansen -
2020 Poster: Multi-task Causal Learning with Gaussian Processes »
Virginia Aglietti · Theodoros Damoulas · Mauricio Álvarez · Javier González -
2019 : Outstanding Contribution Talk: Variational Graph Convolutional Networks »
Edwin Bonilla -
2019 Poster: Multi-resolution Multi-task Gaussian Processes »
Oliver Hamelijnck · Theodoros Damoulas · Kangrui Wang · Mark Girolami -
2018 Poster: Doubly Robust Bayesian Inference for Non-Stationary Streaming Data with $\beta$-Divergences »
Jeremias Knoblauch · Jack E Jewson · Theodoros Damoulas -
2015 Poster: Scalable Inference for Gaussian Process Models with Black-Box Likelihoods »
Amir Dezfouli · Edwin Bonilla -
2014 Poster: Extended and Unscented Gaussian Processes »
Daniel M Steinberg · Edwin Bonilla -
2014 Spotlight: Extended and Unscented Gaussian Processes »
Daniel M Steinberg · Edwin Bonilla -
2014 Poster: Automated Variational Inference for Gaussian Process Models »
Trung V Nguyen · Edwin Bonilla -
2013 Workshop: Machine Learning for Sustainability »
Edwin Bonilla · Thomas Dietterich · Theodoros Damoulas · Andreas Krause · Daniel Sheldon · Iadine Chades · J. Zico Kolter · Bistra Dilkina · Carla Gomes · Hugo P Simao -
2012 Workshop: Human Computation for Science and Computational Sustainability »
Theodoros Damoulas · Thomas Dietterich · Edith Law · Serge Belongie -
2011 Poster: Improving Topic Coherence with Regularized Topic Models »
David Newman · Edwin Bonilla · Wray Buntine -
2010 Poster: Gaussian Process Preference Elicitation »
Edwin Bonilla · Shengbo Guo · Scott Sanner -
2007 Poster: Multi-task Gaussian Process Prediction »
Edwin Bonilla · Kian Ming A Chai · Chris Williams -
2007 Spotlight: Multi-task Gaussian Process Prediction »
Edwin Bonilla · Kian Ming A Chai · Chris Williams