Timezone: »
We augment recurrent neural networks with an external memory mechanism that builds upon recent progress in metalearning. We conceptualize this memory as a rapidly adaptable function that we parameterize as a deep neural network. Reading from the neural memory function amounts to pushing an input (the key vector) through the function to produce an output (the value vector). Writing to memory means changing the function; specifically, updating the parameters of the neural network to encode desired information. We leverage training and algorithmic techniques from metalearning to update the neural memory function in one shot. The proposed memory-augmented model achieves strong performance on a variety of learning problems, from supervised question answering to reinforcement learning.
Author Information
Tsendsuren Munkhdalai (Microsoft Research)
Alessandro Sordoni (Microsoft Research Montreal)
TONG WANG (Microsoft Research Montreal)
Adam Trischler (Microsoft)
More from the Same Authors
-
2022 : Poly-S: Analyzing and Improving Polytropon for Data-Efficient Multi-Task Learning »
Lucas Page-Caccia · Edoardo Maria Ponti · Liyuan Liu · Matheus Pereira · Nicolas Le Roux · Alessandro Sordoni -
2023 Poster: Multi-Head Adapter Routing for Cross-Task Generalization »
Lucas Page-Caccia · Edoardo Maria Ponti · Zhan Su · Matheus Pereira · Nicolas Le Roux · Alessandro Sordoni -
2023 Poster: Deep language networks: joint prompt training of stacked LLMs using variational inference »
Alessandro Sordoni · Eric Yuan · Marc-Alexandre Côté · Matheus Pereira · Adam Trischler · Ziang Xiao · Arian Hosseini · Friederike Niedtner · Nicolas Le Roux -
2020 Workshop: Wordplay: When Language Meets Games »
Prithviraj Ammanabrolu · Matthew Hausknecht · Xingdi Yuan · Marc-Alexandre Côté · Adam Trischler · Kory Mathewson @korymath · John Urbanek · Jason Weston · Mark Riedl -
2020 Poster: Learning Dynamic Belief Graphs to Generalize on Text-Based Games »
Ashutosh Adhikari · Xingdi Yuan · Marc-Alexandre Côté · Mikuláš Zelinka · Marc-Antoine Rondeau · Romain Laroche · Pascal Poupart · Jian Tang · Adam Trischler · Will Hamilton -
2018 : Opening Remarks »
Adam Trischler -
2018 Workshop: Wordplay: Reinforcement and Language Learning in Text-based Games »
Adam Trischler · Angeliki Lazaridou · Yonatan Bisk · Wendy Tay · Nate Kushman · Marc-Alexandre Côté · Alessandro Sordoni · Daniel Ricks · Tom Zahavy · Hal Daumé III -
2018 Poster: Towards Text Generation with Adversarially Learned Neural Outlines »
Sandeep Subramanian · Sai Rajeswar Mudumba · Alessandro Sordoni · Adam Trischler · Aaron Courville · Chris Pal -
2017 Poster: Plan, Attend, Generate: Planning for Sequence-to-Sequence Models »
Caglar Gulcehre · Francis Dutil · Adam Trischler · Yoshua Bengio -
2017 Poster: Z-Forcing: Training Stochastic Recurrent Networks »
Anirudh Goyal · Alessandro Sordoni · Marc-Alexandre Côté · Nan Rosemary Ke · Yoshua Bengio