Timezone: »
Gaussian processes are the leading class of distributions on random functions, but they suffer from well known issues including difficulty scaling and inflexibility with respect to certain shape constraints (such as nonnegativity). Here we propose Deep Random Splines, a flexible class of random functions obtained by transforming Gaussian noise through a deep neural network whose output are the parameters of a spline. Unlike Gaussian processes, Deep Random Splines allow us to readily enforce shape constraints while inheriting the richness and tractability of deep generative models. We also present an observational model for point process data which uses Deep Random Splines to model the intensity function of each point process and apply it to neural population data to obtain a low-dimensional representation of spiking activity. Inference is performed via a variational autoencoder that uses a novel recurrent encoder architecture that can handle multiple point processes as input. We use a newly collected dataset where a primate completes a pedaling task, and observe better dimensionality reduction with our model than with competing alternatives.
Author Information
Gabriel Loaiza-Ganem (Layer 6 AI)
Sean Perkins (Columbia University)
Karen Schroeder (Columbia University)
Mark Churchland (Columbia University)
John Cunningham (University of Columbia)
More from the Same Authors
-
2021 : Neural Latents Benchmark ‘21: Evaluating latent variable models of neural population activity »
Felix Pei · Joel Ye · David Zoltowski · Anqi Wu · Raeed Chowdhury · Hansem Sohn · Joseph O'Doherty · Krishna V Shenoy · Matthew Kaufman · Mark Churchland · Mehrdad Jazayeri · Lee Miller · Jonathan Pillow · Il Memming Park · Eva Dyer · Chethan Pandarinath -
2021 : Entropic Issues in Likelihood-Based OOD Detection »
Anthony Caterini · Gabriel Loaiza-Ganem -
2021 : Entropic Issues in Likelihood-Based OOD Detection »
Anthony Caterini · Gabriel Loaiza-Ganem -
2022 : Relating Regularization and Generalization through the Intrinsic Dimension of Activations »
Bradley Brown · Jordan Juravsky · Anthony Caterini · Gabriel Loaiza-Ganem -
2022 : CaloMan: Fast generation of calorimeter showers with density estimation on learned manifolds »
Jesse Cresswell · Brendan Ross · Gabriel Loaiza-Ganem · Humberto Reyes-Gonzalez · Marco Letizia · Anthony Caterini -
2022 : Relating Regularization and Generalization through the Intrinsic Dimension of Activations »
Bradley Brown · Jordan Juravsky · Anthony Caterini · Gabriel Loaiza-Ganem -
2022 : The Union of Manifolds Hypothesis »
Bradley Brown · Anthony Caterini · Brendan Ross · Jesse Cresswell · Gabriel Loaiza-Ganem -
2022 : The Best Deep Ensembles Sacrifice Predictive Diversity »
Taiga Abe · Estefany Kelly Buchanan · Geoff Pleiss · John Cunningham -
2022 : Denoising Deep Generative Models »
Gabriel Loaiza-Ganem · Brendan Ross · Luhuan Wu · John Cunningham · Jesse Cresswell · Anthony Caterini -
2022 : Spotlight 5 - Gabriel Loaiza-Ganem: Denoising Deep Generative Models »
Gabriel Loaiza-Ganem -
2022 Poster: Data Augmentation for Compositional Data: Advancing Predictive Models of the Microbiome »
Elliott Gordon-Rodriguez · Thomas Quinn · John Cunningham -
2022 Poster: Posterior and Computational Uncertainty in Gaussian Processes »
Jonathan Wenger · Geoff Pleiss · Marvin Pförtner · Philipp Hennig · John Cunningham -
2022 Poster: Deep Ensembles Work, But Are They Necessary? »
Taiga Abe · Estefany Kelly Buchanan · Geoff Pleiss · Richard Zemel · John Cunningham -
2021 Poster: The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective »
Geoff Pleiss · John Cunningham -
2021 Poster: Posterior Collapse and Latent Variable Non-identifiability »
Yixin Wang · David Blei · John Cunningham -
2021 Poster: Rectangular Flows for Manifold Learning »
Anthony Caterini · Gabriel Loaiza-Ganem · Geoff Pleiss · John Cunningham -
2020 Poster: Deep Graph Pose: a semi-supervised deep graphical model for improved animal pose tracking »
Anqi Wu · Estefany Kelly Buchanan · Matthew Whiteway · Michael Schartner · Guido Meijer · Jean-Paul Noel · Erica Rodriguez · Claire Everett · Amy Norovich · Evan Schaffer · Neeli Mishra · C. Daniel Salzman · Dora Angelaki · Andrés Bendesky · The International Brain Laboratory The International Brain Laboratory · John Cunningham · Liam Paninski -
2020 Poster: Recurrent Switching Dynamical Systems Models for Multiple Interacting Neural Populations »
Joshua Glaser · Matthew Whiteway · John Cunningham · Liam Paninski · Scott Linderman -
2020 Poster: Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax »
Andres Potapczynski · Gabriel Loaiza-Ganem · John Cunningham -
2019 Poster: Paraphrase Generation with Latent Bag of Words »
Yao Fu · Yansong Feng · John Cunningham -
2019 Poster: BehaveNet: nonlinear embedding and Bayesian neural decoding of behavioral videos »
Eleanor Batty · Matthew Whiteway · Shreya Saxena · Dan Biderman · Taiga Abe · Simon Musall · Winthrop Gillis · Jeffrey Markowitz · Anne Churchland · John Cunningham · Sandeep R Datta · Scott Linderman · Liam Paninski -
2019 Poster: The continuous Bernoulli: fixing a pervasive error in variational autoencoders »
Gabriel Loaiza-Ganem · John Cunningham -
2016 Poster: Linear dynamical neural population models through nonlinear embeddings »
Yuanjun Gao · Evan Archer · Liam Paninski · John Cunningham -
2016 Poster: Automated scalable segmentation of neurons from multispectral images »
Uygar Sümbül · Douglas Roossien · Dawen Cai · Fei Chen · Nicholas Barry · John Cunningham · Edward Boyden · Liam Paninski -
2015 Poster: Bayesian Active Model Selection with an Application to Automated Audiometry »
Jacob Gardner · Gustavo Malkomes · Roman Garnett · Kilian Weinberger · Dennis Barbour · John Cunningham -
2015 Poster: High-dimensional neural spike train analysis with generalized count linear dynamical systems »
Yuanjun Gao · Lars Busing · Krishna V Shenoy · John Cunningham -
2015 Spotlight: High-dimensional neural spike train analysis with generalized count linear dynamical systems »
Yuanjun Gao · Lars Busing · Krishna V Shenoy · John Cunningham