Timezone: »
Variational Bayes (VB) is a scalable alternative to Markov chain Monte Carlo (MCMC) for Bayesian posterior inference. Though popular, VB comes with few theoretical guarantees, most of which focus on well-specified models. However, models are rarely well-specified in practice. In this work, we study VB under model misspecification. We prove the VB posterior is asymptotically normal and centers at the value that minimizes the Kullback-Leibler (KL) divergence to the true data-generating distribution. Moreover, the VB posterior mean centers at the same value and is also asymptotically normal. These results generalize the variational Bernstein--von Mises theorem [29] to misspecified models. As a consequence of these results, we find that the model misspecification error dominates the variational approximation error in VB posterior predictive distributions. It explains the widely observed phenomenon that VB achieves comparable predictive accuracy with MCMC even though VB uses an approximating family. As illustrations, we study VB under three forms of model misspecification, ranging from model over-/under-dispersion to latent dimensionality misspecification. We conduct two simulation studies that demonstrate the theoretical results.
Author Information
Yixin Wang (Columbia University)
David Blei (Columbia University)
David Blei is a Professor of Statistics and Computer Science at Columbia University, and a member of the Columbia Data Science Institute. His research is in statistical machine learning, involving probabilistic topic models, Bayesian nonparametric methods, and approximate posterior inference algorithms for massive data. He works on a variety of applications, including text, images, music, social networks, user behavior, and scientific data. David has received several awards for his research, including a Sloan Fellowship (2010), Office of Naval Research Young Investigator Award (2011), Presidential Early Career Award for Scientists and Engineers (2011), Blavatnik Faculty Award (2013), and ACM-Infosys Foundation Award (2013). He is a fellow of the ACM.
More from the Same Authors
-
2021 Spotlight: Learning Equilibria in Matching Markets from Bandit Feedback »
Meena Jagadeesan · Alexander Wei · Yixin Wang · Michael Jordan · Jacob Steinhardt -
2021 : Desiderata for Representation Learning: A Causal Perspective »
Yixin Wang · Michael Jordan -
2021 : Unveiling Mode-connectivity of the ELBO Landscape »
Edith Zhang · David Blei -
2022 : An Invariant Learning Characterization of Controlled Text Generation »
Claudia Shi · Carolina Zheng · Keyon Vafa · Amir Feder · David Blei -
2022 : A Bayesian Causal Inference Approach for Assessing Fairness in Clinical Decision-Making »
Linying Zhang · Lauren Richter · Yixin Wang · Anna Ostropolets · Noemie Elhadad · David Blei · George Hripcsak -
2022 : Adjusting the Gender Wage Gap with a Low-Dimensional Representation of Job History »
Keyon Vafa · Susan Athey · David Blei -
2022 : CAREER: Economic Prediction of Labor Sequence Data Under Distribution Shift »
Keyon Vafa · Emil Palikot · Tianyu Du · Ayush Kanodia · Susan Athey · David Blei -
2022 : An Invariant Learning Characterization of Controlled Text Generation »
Claudia Shi · Carolina Zheng · Keyon Vafa · Amir Feder · David Blei -
2022 : Valid Inference after Causal Discovery »
Paula Gradu · Tijana Zrnic · Yixin Wang · Michael Jordan -
2022 : Interventional Causal Representation Learning »
Kartik Ahuja · Yixin Wang · Divyat Mahajan · Yoshua Bengio -
2022 : Interventional Causal Representation Learning »
Kartik Ahuja · Yixin Wang · Divyat Mahajan · Yoshua Bengio -
2022 : Interventional Causal Representation Learning »
Kartik Ahuja · Yixin Wang · Divyat Mahajan · Yoshua Bengio -
2022 Workshop: Learning Meaningful Representations of Life »
Elizabeth Wood · Adji Bousso Dieng · Aleksandrina Goeva · Alex X Lu · Anshul Kundaje · Chang Liu · Debora Marks · Ed Boyden · Eli N Weinstein · Lorin Crawford · Mor Nitzan · Rebecca Boiarsky · Romain Lopez · Tamara Broderick · Ray Jones · Wouter Boomsma · Yixin Wang · Stephen Ra -
2022 : CAREER: Economic Prediction of Labor Sequence Data Under Distribution Shift »
Keyon Vafa · Emil Palikot · Tianyu Du · Ayush Kanodia · Susan Athey · David Blei -
2022 : Dynamic Survival Transformers for Causal Inference with Electronic Health Records »
Prayag Chatha · Yixin Wang · Zhenke Wu · Jeffrey Regier -
2022 : Dynamic Survival Transformers for Causal Inference with Electronic Health Records »
Prayag Chatha · Yixin Wang · Zhenke Wu · Jeffrey Regier -
2022 : An Invariant Learning Characterization of Controlled Text Generation »
Claudia Shi · Carolina Zheng · Keyon Vafa · Amir Feder · David Blei -
2022 Poster: Anticipating Performativity by Predicting from Predictions »
Celestine Mendler-Dünner · Frances Ding · Yixin Wang -
2022 Poster: Empirical Gateaux Derivatives for Causal Inference »
Michael Jordan · Yixin Wang · Angela Zhou -
2021 : Invited Talk 6 Q&A »
Yixin Wang -
2021 : Statistical and Computational Tradeoffs in Variational Bayes »
Yixin Wang -
2021 Workshop: Learning Meaningful Representations of Life (LMRL) »
Elizabeth Wood · Adji Bousso Dieng · Aleksandrina Goeva · Anshul Kundaje · Barbara Engelhardt · Chang Liu · David Van Valen · Debora Marks · Edward Boyden · Eli N Weinstein · Lorin Crawford · Mor Nitzan · Romain Lopez · Tamara Broderick · Ray Jones · Wouter Boomsma · Yixin Wang -
2021 : David Blei - On the Assumptions of Synthetic Control Methods »
David Blei -
2021 Test Of Time: Online Learning for Latent Dirichlet Allocation »
Matthew Hoffman · Francis Bach · David Blei -
2021 Poster: Posterior Collapse and Latent Variable Non-identifiability »
Yixin Wang · David Blei · John Cunningham -
2021 Poster: Learning Equilibria in Matching Markets from Bandit Feedback »
Meena Jagadeesan · Alexander Wei · Yixin Wang · Michael Jordan · Jacob Steinhardt -
2020 Workshop: I Can’t Believe It’s Not Better! Bridging the gap between theory and empiricism in probabilistic machine learning »
Jessica Forde · Francisco Ruiz · Melanie Fernandez Pradier · Aaron Schein · Finale Doshi-Velez · Isabel Valera · David Blei · Hanna Wallach -
2020 Workshop: Learning Meaningful Representations of Life (LMRL.org) »
Elizabeth Wood · Debora Marks · Ray Jones · Adji Bousso Dieng · Alan Aspuru-Guzik · Anshul Kundaje · Barbara Engelhardt · Chang Liu · Edward Boyden · Kresten Lindorff-Larsen · Mor Nitzan · Smita Krishnaswamy · Wouter Boomsma · Yixin Wang · David Van Valen · Orr Ashenberg -
2020 Poster: Point process models for sequence detection in high-dimensional neural spike trains »
Alex Williams · Anthony Degleris · Yixin Wang · Scott Linderman -
2020 Oral: Point process models for sequence detection in high-dimensional neural spike trains »
Alex Williams · Anthony Degleris · Yixin Wang · Scott Linderman -
2020 Poster: Markovian Score Climbing: Variational Inference with KL(p||q) »
Christian Naesseth · Fredrik Lindsten · David Blei -
2019 Poster: Poisson-Randomized Gamma Dynamical Systems »
Aaron Schein · Scott Linderman · Mingyuan Zhou · David Blei · Hanna Wallach -
2019 Poster: Using Embeddings to Correct for Unobserved Confounding in Networks »
Victor Veitch · Yixin Wang · David Blei -
2019 Poster: Adapting Neural Networks for the Estimation of Treatment Effects »
Claudia Shi · David Blei · Victor Veitch -
2018 : Datasets and Benchmarks for Causal Learning »
Csaba Szepesvari · Isabelle Guyon · Nicolai Meinshausen · David Blei · Elias Bareinboim · Bernhard Schölkopf · Pietro Perona -
2018 : The Blessings of Multiple Causes »
David Blei -
2017 : Panel: On the Foundations and Future of Approximate Inference »
David Blei · Zoubin Ghahramani · Katherine Heller · Tim Salimans · Max Welling · Matthew D. Hoffman -
2017 Workshop: Advances in Approximate Bayesian Inference »
Francisco Ruiz · Stephan Mandt · Cheng Zhang · James McInerney · James McInerney · Dustin Tran · Dustin Tran · David Blei · Max Welling · Tamara Broderick · Michalis Titsias -
2017 Poster: Hierarchical Implicit Models and Likelihood-Free Variational Inference »
Dustin Tran · Rajesh Ranganath · David Blei -
2017 Poster: Structured Embedding Models for Grouped Data »
Maja Rudolph · Francisco Ruiz · Susan Athey · David Blei -
2017 Poster: Variational Inference via $\chi$ Upper Bound Minimization »
Adji Bousso Dieng · Dustin Tran · Rajesh Ranganath · John Paisley · David Blei -
2017 Poster: Context Selection for Embedding Models »
Liping Liu · Francisco Ruiz · Susan Athey · David Blei -
2016 : Causal Inference for Recommendation Systems »
David Blei -
2016 : Panel Discussion »
Shakir Mohamed · David Blei · Ryan Adams · José Miguel Hernández-Lobato · Ian Goodfellow · Yarin Gal -
2016 : Deep exponential families »
David Blei -
2016 Workshop: Advances in Approximate Bayesian Inference »
Tamara Broderick · Stephan Mandt · James McInerney · Dustin Tran · David Blei · Kevin Murphy · Andrew Gelman · Michael I Jordan -
2016 Poster: Operator Variational Inference »
Rajesh Ranganath · Dustin Tran · Jaan Altosaar · David Blei -
2016 Poster: The Generalized Reparameterization Gradient »
Francisco Ruiz · Michalis Titsias · David Blei -
2016 Poster: Exponential Family Embeddings »
Maja Rudolph · Francisco Ruiz · Stephan Mandt · David Blei -
2016 Tutorial: Variational Inference: Foundations and Modern Methods »
David Blei · Shakir Mohamed · Rajesh Ranganath -
2015 Workshop: Advances in Approximate Bayesian Inference »
Dustin Tran · Tamara Broderick · Stephan Mandt · James McInerney · Shakir Mohamed · Alp Kucukelbir · Matthew D. Hoffman · Neil Lawrence · David Blei -
2015 Poster: The Population Posterior and Bayesian Modeling on Streams »
James McInerney · Rajesh Ranganath · David Blei -
2015 Poster: Automatic Variational Inference in Stan »
Alp Kucukelbir · Rajesh Ranganath · Andrew Gelman · David Blei -
2015 Spotlight: Automatic Variational Inference in Stan »
Alp Kucukelbir · Rajesh Ranganath · Andrew Gelman · David Blei -
2015 Poster: Copula variational inference »
Dustin Tran · David Blei · Edo M Airoldi