Timezone: »
Differential privacy has emerged as the main definition for private data analysis and machine learning. The global model of differential privacy, which assumes that users trust the data collector, provides strong privacy guarantees and introduces small errors in the output. In contrast, applications of differential privacy in commercial systems by Apple, Google, and Microsoft, use the local model. Here, users do not trust the data collector, and hence randomize their data before sending it to the data collector. Unfortunately, local model is too strong for several important applications and hence is limited in its applicability. In this work, we propose a framework based on trusted processors and a new definition of differential privacy called Oblivious Differential Privacy, which combines the best of both local and global models. The algorithms we design in this framework show interesting interplay of ideas from the streaming algorithms, oblivious algorithms, and differential privacy.
Author Information
Janardhan Kulkarni (MSR, Redmond)
Olga Ohrimenko (The University of Melbourne)
Bolin Ding (Alibaba Group)
Sergey Yekhanin (Microsoft)
Joshua Allen (Microsoft)
Harsha Nori (Microsoft)
More from the Same Authors
-
2020 : Accuracy, Interpretability and Differential Privacy via Explainable Boosting »
Harsha Nori -
2021 : GAM Changer: Editing Generalized Additive Models with Interactive Visualization »
Jay Wang · Harsha Nori · Duen Horng Chau · Jennifer Wortman Vaughan · Rich Caruana -
2022 Poster: VF-PS: How to Select Important Participants in Vertical Federated Learning, Efficiently and Securely? »
Jiawei Jiang · Lukas Burkhalter · Fangcheng Fu · Bolin Ding · Bo Du · Anwar Hithnawi · Bo Li · Ce Zhang -
2022 Poster: EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural Networks »
Runlin Lei · Zhen Wang · Yaliang Li · Bolin Ding · Zhewei Wei -
2023 : Differentially Private Synthetic Data via Foundation Model APIs 1: Images »
Zinan Lin · Sivakanth Gopi · Janardhan Kulkarni · Harsha Nori · Sergey Yekhanin -
2023 Poster: RS-Del: Edit Distance Robustness Certificates for Sequence Classifiers via Randomized Deletion »
Zhuoqun Huang · Neil G Marchant · Keane Lucas · Lujo Bauer · Olga Ohrimenko · Benjamin Rubinstein -
2022 Spotlight: Lightning Talks 1A-3 »
Kimia Noorbakhsh · Ronan Perry · Qi Lyu · Jiawei Jiang · Christian Toth · Olivier Jeunen · Xin Liu · Yuan Cheng · Lei Li · Manuel Rodriguez · Julius von Kügelgen · Lars Lorch · Nicolas Donati · Lukas Burkhalter · Xiao Fu · Zhongdao Wang · Songtao Feng · Ciarán Gilligan-Lee · Rishabh Mehrotra · Fangcheng Fu · Jing Yang · Bernhard Schölkopf · Ya-Li Li · Christian Knoll · Maks Ovsjanikov · Andreas Krause · Shengjin Wang · Hong Zhang · Mounia Lalmas · Bolin Ding · Bo Du · Yingbin Liang · Franz Pernkopf · Robert Peharz · Anwar Hithnawi · Julius von Kügelgen · Bo Li · Ce Zhang -
2022 Spotlight: EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural Networks »
Runlin Lei · Zhen Wang · Yaliang Li · Bolin Ding · Zhewei Wei -
2022 Spotlight: VF-PS: How to Select Important Participants in Vertical Federated Learning, Efficiently and Securely? »
Jiawei Jiang · Lukas Burkhalter · Fangcheng Fu · Bolin Ding · Bo Du · Anwar Hithnawi · Bo Li · Ce Zhang -
2022 Spotlight: Lightning Talks 1B-1 »
Qitian Wu · Runlin Lei · Rongqin Chen · Luca Pinchetti · Yangze Zhou · Abhinav Kumar · Hans Hao-Hsun Hsu · Wentao Zhao · Chenhao Tan · Zhen Wang · Shenghui Zhang · Yuesong Shen · Tommaso Salvatori · Gitta Kutyniok · Zenan Li · Amit Sharma · Leong Hou U · Yordan Yordanov · Christian Tomani · Bruno Ribeiro · Yaliang Li · David P Wipf · Daniel Cremers · Bolin Ding · Beren Millidge · Ye Li · Yuhang Song · Junchi Yan · Zhewei Wei · Thomas Lukasiewicz -
2022 Poster: pFL-Bench: A Comprehensive Benchmark for Personalized Federated Learning »
Daoyuan Chen · Dawei Gao · Weirui Kuang · Yaliang Li · Bolin Ding -
2021 Poster: Differentially Private n-gram Extraction »
Kunho Kim · Sivakanth Gopi · Janardhan Kulkarni · Sergey Yekhanin -
2020 Workshop: Privacy Preserving Machine Learning - PriML and PPML Joint Edition »
Borja Balle · James Bell · Aurélien Bellet · Kamalika Chaudhuri · Adria Gascon · Antti Honkela · Antti Koskela · Casey Meehan · Olga Ohrimenko · Mi Jung Park · Mariana Raykova · Mary Anne Smart · Yu-Xiang Wang · Adrian Weller -
2019 Poster: Oblivious Sampling Algorithms for Private Data Analysis »
Olga Ohrimenko · Sajin Sasy -
2018 : Poster Session »
Phillipp Schoppmann · Patrick Yu · Valerie Chen · Travis Dick · Marc Joye · Ningshan Zhang · Frederik Harder · Olli Saarikivi · Théo Ryffel · Yunhui Long · Théo JOURDAN · Di Wang · Antonio Marcedone · Negev Shekel Nosatzki · Yatharth A Dubey · Antti Koskela · Peter Bloem · Aleksandra Korolova · Martin Bertran · Hao Chen · Galen Andrew · Natalia Martinez · Janardhan Kulkarni · Jonathan Passerat-Palmbach · Guillermo Sapiro · Amrita Roy Chowdhury -
2017 Poster: Collecting Telemetry Data Privately »
Bolin Ding · Janardhan Kulkarni · Sergey Yekhanin -
2017 Poster: Clustering Billions of Reads for DNA Data Storage »
Cyrus Rashtchian · Konstantin Makarychev · Miklos Racz · Siena Ang · Djordje Jevdjic · Sergey Yekhanin · Luis Ceze · Karin Strauss -
2017 Spotlight: Clustering Billions of Reads for DNA Data Storage »
Cyrus Rashtchian · Konstantin Makarychev · Miklos Racz · Siena Ang · Djordje Jevdjic · Sergey Yekhanin · Luis Ceze · Karin Strauss