Timezone: »
Differential privacy has emerged as the main definition for private data analysis and machine learning. The global model of differential privacy, which assumes that users trust the data collector, provides strong privacy guarantees and introduces small errors in the output. In contrast, applications of differential privacy in commercial systems by Apple, Google, and Microsoft, use the local model. Here, users do not trust the data collector, and hence randomize their data before sending it to the data collector. Unfortunately, local model is too strong for several important applications and hence is limited in its applicability. In this work, we propose a framework based on trusted processors and a new definition of differential privacy called Oblivious Differential Privacy, which combines the best of both local and global models. The algorithms we design in this framework show interesting interplay of ideas from the streaming algorithms, oblivious algorithms, and differential privacy.
Author Information
Jana Kulkarni (MSR, Redmond)
Olga Ohrimenko (The University of Melbourne)
Bolin Ding (Alibaba Group)
Sergey Yekhanin (Microsoft)
Joshua Allen (Microsoft)
Harsha Nori (Microsoft)
More from the Same Authors
-
2020 Workshop: Privacy Preserving Machine Learning - PriML and PPML Joint Edition »
Borja Balle · James Bell · AurĂ©lien Bellet · Kamalika Chaudhuri · Adria Gascon · Antti Honkela · Antti Koskela · Casey Meehan · Olga Ohrimenko · Mi Jung Park · Mariana Raykova · Mary Anne Smart · Yu-Xiang Wang · Adrian Weller -
2019 Poster: Oblivious Sampling Algorithms for Private Data Analysis »
Olga Ohrimenko · Sajin Sasy -
2017 Poster: Collecting Telemetry Data Privately »
Bolin Ding · Janardhan Kulkarni · Sergey Yekhanin -
2017 Poster: Clustering Billions of Reads for DNA Data Storage »
Cyrus Rashtchian · Konstantin Makarychev · Miklos Racz · Siena Ang · Djordje Jevdjic · Sergey Yekhanin · Luis Ceze · Karin Strauss -
2017 Spotlight: Clustering Billions of Reads for DNA Data Storage »
Cyrus Rashtchian · Konstantin Makarychev · Miklos Racz · Siena Ang · Djordje Jevdjic · Sergey Yekhanin · Luis Ceze · Karin Strauss