Timezone: »
Neural architecture search methods are able to find high performance deep learning architectures with minimal effort from an expert. However, current systems focus on specific use-cases (e.g. convolutional image classifiers and recurrent language models), making them unsuitable for general use-cases that an expert might wish to write. Hyperparameter optimization systems are general-purpose but lack the constructs needed for easy application to architecture search. In this work, we propose a formal language for encoding search spaces over general computational graphs. The language constructs allow us to write modular, composable, and reusable search space encodings and to reason about search space design. We use our language to encode search spaces from the architecture search literature. The language allows us to decouple the implementations of the search space and the search algorithm, allowing us to expose search spaces to search algorithms through a consistent interface. Our experiments show the ease with which we can experiment with different combinations of search spaces and search algorithms without having to implement each combination from scratch. We release an implementation of our language with this paper.
Author Information
Renato Negrinho (Carnegie Mellon University)
Matthew Gormley (Carnegie Mellon University)
Geoffrey Gordon (MSR Montréal & CMU)
Dr. Gordon is an Associate Research Professor in the Department of Machine Learning at Carnegie Mellon University, and co-director of the Department's Ph. D. program. He works on multi-robot systems, statistical machine learning, game theory, and planning in probabilistic, adversarial, and general-sum domains. His previous appointments include Visiting Professor at the Stanford Computer Science Department and Principal Scientist at Burning Glass Technologies in San Diego. Dr. Gordon received his B.A. in Computer Science from Cornell University in 1991, and his Ph.D. in Computer Science from Carnegie Mellon University in 1999.
Darshan Patil (Carnegie Mellon University)
Nghia Le (Carnegie Mellon University)
Daniel Ferreira (TU Wien)
More from the Same Authors
-
2021 : COCO Denoiser: Using Co-Coercivity for Variance Reduction in Stochastic Convex Optimization »
Manuel Madeira · Renato Negrinho · Joao Xavier · Pedro Aguiar -
2023 Poster: Unlimiformer: Long-Range Transformers with Unlimited Length Input »
Amanda Bertsch · Uri Alon · Graham Neubig · Matthew Gormley -
2023 Poster: Large Language Models of Code Fail at Completing Code with Potential Bugs »
Tuan Dinh · Jinman Zhao · Samson Tan · Renato Negrinho · Leonard Lausen · Sheng Zha · George Karypis -
2023 Poster: Fundamental Limits and Tradeoffs in Invariant Representation Learning »
Han Zhao · Chen Dan · Bryon Aragam · Tommi Jaakkola · Geoffrey Gordon · Pradeep Ravikumar -
2022 Poster: AdaFocal: Calibration-aware Adaptive Focal Loss »
Arindam Ghosh · Thomas Schaaf · Matthew Gormley -
2020 Poster: Trade-offs and Guarantees of Adversarial Representation Learning for Information Obfuscation »
Han Zhao · Jianfeng Chi · Yuan Tian · Geoffrey Gordon -
2020 Poster: Domain Adaptation with Conditional Distribution Matching and Generalized Label Shift »
Remi Tachet des Combes · Han Zhao · Yu-Xiang Wang · Geoffrey Gordon -
2019 Poster: Learning Neural Networks with Adaptive Regularization »
Han Zhao · Yao-Hung Hubert Tsai · Russ Salakhutdinov · Geoffrey Gordon -
2018 Poster: Learning Beam Search Policies via Imitation Learning »
Renato Negrinho · Matthew Gormley · Geoffrey Gordon -
2018 Poster: Dual Policy Iteration »
Wen Sun · Geoffrey Gordon · Byron Boots · J. Bagnell -
2018 Poster: Adversarial Multiple Source Domain Adaptation »
Han Zhao · Shanghang Zhang · Guanhang Wu · José M. F. Moura · Joao P Costeira · Geoffrey Gordon -
2017 Poster: Linear Time Computation of Moments in Sum-Product Networks »
Han Zhao · Geoffrey Gordon -
2017 Poster: Predictive State Recurrent Neural Networks »
Carlton Downey · Ahmed Hefny · Byron Boots · Geoffrey Gordon · Boyue Li -
2016 Poster: A Unified Approach for Learning the Parameters of Sum-Product Networks »
Han Zhao · Pascal Poupart · Geoffrey Gordon -
2015 Poster: Supervised Learning for Dynamical System Learning »
Ahmed Hefny · Carlton Downey · Geoffrey Gordon -
2014 Session: Oral Session 7 »
Geoffrey Gordon -
2014 Poster: Orbit Regularization »
Renato Negrinho · Andre Martins -
2012 Tutorial: Machine Learning for Student Learning »
Emma Brunskill · Geoffrey Gordon -
2010 Poster: Predictive State Temporal Difference Learning »
Byron Boots · Geoffrey Gordon -
2007 Oral: A Constraint Generation Approach to Learning Stable Linear Dynamical Systems »
Sajid M Siddiqi · Byron Boots · Geoffrey Gordon -
2007 Poster: A Constraint Generation Approach to Learning Stable Linear Dynamical Systems »
Sajid M Siddiqi · Byron Boots · Geoffrey Gordon -
2006 Poster: No-regret algorithms for Online Convex Programs »
Geoffrey Gordon -
2006 Talk: No-regret algorithms for Online Convex Programs »
Geoffrey Gordon -
2006 Poster: Multi-Robot Negotiation: Approximating the Set of Subgame Perfect Equilibria in General Sum Stochastic Games »
Chris D Murray · Geoffrey Gordon