Timezone: »
Poster
A Graph Theoretic Additive Approximation of Optimal Transport
Nathaniel Lahn · Deepika Mulchandani · Sharath Raghvendra
Tue Dec 10 10:45 AM  12:45 PM (PST) @ East Exhibition Hall B + C #174
Transportation cost is an attractive similarity measure between probability distributions due to its many useful theoretical properties. However, solving optimal transport exactly can be prohibitively expensive. Therefore, there has been significant effort towards the design of scalable approximation algorithms. Previous combinatorial results [Sharathkumar, Agarwal STOC '12, Agarwal, Sharathkumar STOC '14] have focused primarily on the design of nearlinear time multiplicative approximation algorithms. There has also been an effort to design approximate solutions with additive errors [Cuturi NIPS '13, Altschuler \etal\ NIPS '17, Dvurechensky \etal\, ICML '18, Quanrud, SOSA '19] within a time bound that is linear in the size of the cost matrix and polynomial in $C/\delta$; here $C$ is the largest value in the cost matrix and $\delta$ is the additive error.
We present an adaptation of the classical graph algorithm of Gabow and Tarjan and provide a novel analysis of this algorithm that bounds its execution time by $\BigO(\frac{n^2 C}{\delta}+ \frac{nC^2}{\delta^2})$. Our algorithm is extremely simple and executes, for an arbitrarily small constant $\eps$, only $\lfloor \frac{2C}{(1\eps)\delta}\rfloor + 1$ iterations, where each iteration consists only of a Dijkstratype search followed by a depthfirst search. We also provide empirical results that suggest our algorithm is competitive with respect to a sequential implementation of the Sinkhorn algorithm in execution time. Moreover, our algorithm quickly computes a solution for very small values of $\delta$ whereas Sinkhorn algorithm slows down due to numerical instability.
Author Information
Nathaniel Lahn (Virginia Tech)
Deepika Mulchandani (Walmart Labs)
Sharath Raghvendra (Virginia Tech)
More from the Same Authors

2021 Poster: A Faster Maximum Cardinality Matching Algorithm with Applications in Machine Learning »
Nathaniel Lahn · Sharath Raghvendra · Jiacheng Ye