Timezone: »
Modern machine learning methods including deep learning have achieved great success in predictive accuracy for supervised learning tasks, but may still fall short in giving useful estimates of their predictive uncertainty. Quantifying uncertainty is especially critical in real-world settings, which often involve input distributions that are shifted from the training distribution due to a variety of factors including sample bias and non-stationarity. In such settings, well calibrated uncertainty estimates convey information about when a model's output should (or should not) be trusted. Many probabilistic deep learning methods, including Bayesian-and non-Bayesian methods, have been proposed in the literature for quantifying predictive uncertainty, but to our knowledge there has not previously been a rigorous large-scale empirical comparison of these methods under dataset shift. We present a large-scale benchmark of existing state-of-the-art methods on classification problems and investigate the effect of dataset shift on accuracy and calibration. We find that traditional post-hoc calibration does indeed fall short, as do several other previous methods. However, some methods that marginalize over models give surprisingly strong results across a broad spectrum of tasks.
Author Information
Jasper Snoek (Google Brain)
Yaniv Ovadia (Princeton University)
Emily Fertig (Google Research)
Balaji Lakshminarayanan (Google DeepMind)
Sebastian Nowozin (Google Research Berlin)
D. Sculley (Google Research)
Joshua Dillon (Google)
Jie Ren (Google Inc.)
Zachary Nado (Google Inc.)
More from the Same Authors
-
2020 Poster: Bayesian Deep Ensembles via the Neural Tangent Kernel »
Bobby He · Balaji Lakshminarayanan · Yee Whye Teh -
2020 Poster: Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness »
Jeremiah Liu · Zi Lin · Shreyas Padhy · Dustin Tran · Tania Bedrax Weiss · Balaji Lakshminarayanan -
2020 Tutorial: (Track2) Practical Uncertainty Estimation and Out-of-Distribution Robustness in Deep Learning Q&A »
Dustin Tran · Balaji Lakshminarayanan · Jasper Snoek -
2020 Tutorial: (Track2) Practical Uncertainty Estimation and Out-of-Distribution Robustness in Deep Learning »
Dustin Tran · Balaji Lakshminarayanan · Jasper Snoek -
2019 Workshop: Program Transformations for ML »
Pascal Lamblin · Atilim Gunes Baydin · Alexander Wiltschko · Bart van Merriënboer · Emily Fertig · Barak Pearlmutter · David Duvenaud · Laurent Hascoet -
2019 Workshop: Learning Meaningful Representations of Life »
Elizabeth Wood · Yakir Reshef · Jonathan Bloom · Jasper Snoek · Barbara Engelhardt · Scott Linderman · Suchi Saria · Alexander Wiltschko · Casey Greene · Chang Liu · Kresten Lindorff-Larsen · Debora Marks -
2019 Poster: Which Algorithmic Choices Matter at Which Batch Sizes? Insights From a Noisy Quadratic Model »
Guodong Zhang · Lala Li · Zachary Nado · James Martens · Sushant Sachdeva · George Dahl · Chris Shallue · Roger Grosse -
2019 Poster: Icebreaker: Element-wise Efficient Information Acquisition with a Bayesian Deep Latent Gaussian Model »
Wenbo Gong · Sebastian Tschiatschek · Sebastian Nowozin · Richard Turner · José Miguel Hernández-Lobato · Cheng Zhang -
2019 Poster: Fast and Flexible Multi-Task Classification using Conditional Neural Adaptive Processes »
James Requeima · Jonathan Gordon · John Bronskill · Sebastian Nowozin · Richard Turner -
2019 Spotlight: Fast and Flexible Multi-Task Classification using Conditional Neural Adaptive Processes »
James Requeima · Jonathan Gordon · John Bronskill · Sebastian Nowozin · Richard Turner -
2019 Poster: Likelihood Ratios for Out-of-Distribution Detection »
Jie Ren · Peter Liu · Emily Fertig · Jasper Snoek · Ryan Poplin · Mark Depristo · Joshua Dillon · Balaji Lakshminarayanan -
2019 Poster: DppNet: Approximating Determinantal Point Processes with Deep Networks »
Zelda Mariet · Yaniv Ovadia · Jasper Snoek -
2018 Workshop: Smooth Games Optimization and Machine Learning »
Simon Lacoste-Julien · Ioannis Mitliagkas · Gauthier Gidel · Vasilis Syrgkanis · Eva Tardos · Leon Bottou · Sebastian Nowozin -
2018 Workshop: Workshop on Ethical, Social and Governance Issues in AI »
Chloe Bakalar · Sarah Bird · Tiberio Caetano · Edward W Felten · Dario Garcia · Isabel Kloumann · Finnian Lattimore · Sendhil Mullainathan · D. Sculley -
2017 Workshop: Machine Learning for Health (ML4H) - What Parts of Healthcare are Ripe for Disruption by Machine Learning Right Now? »
Jason Fries · Alex Wiltschko · Andrew Beam · Isaac S Kohane · Jasper Snoek · Peter Schulam · Madalina Fiterau · David Kale · Rajesh Ranganath · Bruno Jedynak · Michael Hughes · Tristan Naumann · Natalia Antropova · Adrian Dalca · SHUBHI ASTHANA · Prateek Tandon · Jaz Kandola · Uri Shalit · Marzyeh Ghassemi · Tim Althoff · Alexander Ratner · Jumana Dakka -
2017 Poster: The Numerics of GANs »
Lars Mescheder · Sebastian Nowozin · Andreas Geiger -
2017 Poster: Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles »
Balaji Lakshminarayanan · Alexander Pritzel · Charles Blundell -
2017 Spotlight: Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles »
Balaji Lakshminarayanan · Alexander Pritzel · Charles Blundell -
2017 Spotlight: The Numerics of GANs »
Lars Mescheder · Sebastian Nowozin · Andreas Geiger -
2017 Poster: Stabilizing Training of Generative Adversarial Networks through Regularization »
Kevin Roth · Aurelien Lucchi · Sebastian Nowozin · Thomas Hofmann -
2016 Poster: f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization »
Sebastian Nowozin · Botond Cseke · Ryota Tomioka -
2016 Poster: DISCO Nets : DISsimilarity COefficients Networks »
Diane Bouchacourt · Pawan K Mudigonda · Sebastian Nowozin -
2015 Poster: Spectral Representations for Convolutional Neural Networks »
Oren Rippel · Jasper Snoek · Ryan Adams -
2015 Poster: Hidden Technical Debt in Machine Learning Systems »
D. Sculley · Gary Holt · Daniel Golovin · Eugene Davydov · Todd Phillips · Dietmar Ebner · Vinay Chaudhary · Michael Young · Jean-François Crespo · Dan Dennison -
2014 Workshop: Discrete Optimization in Machine Learning »
Jeffrey A Bilmes · Andreas Krause · Stefanie Jegelka · S Thomas McCormick · Sebastian Nowozin · Yaron Singer · Dhruv Batra · Volkan Cevher -
2014 Workshop: Bayesian Optimization in Academia and Industry »
Zoubin Ghahramani · Ryan Adams · Matthew Hoffman · Kevin Swersky · Jasper Snoek -
2014 Poster: Distributed Bayesian Posterior Sampling via Moment Sharing »
Minjie Xu · Balaji Lakshminarayanan · Yee Whye Teh · Jun Zhu · Bo Zhang -
2014 Session: Oral Session 2 »
D. Sculley -
2014 Poster: Mondrian Forests: Efficient Online Random Forests »
Balaji Lakshminarayanan · Daniel Roy · Yee Whye Teh -
2013 Workshop: Bayesian Optimization in Theory and Practice »
Matthew Hoffman · Jasper Snoek · Nando de Freitas · Michael A Osborne · Ryan Adams · Sebastien Bubeck · Philipp Hennig · Remi Munos · Andreas Krause -
2013 Poster: Decision Jungles: Compact and Rich Models for Classification »
Jamie Shotton · Toby Sharp · Pushmeet Kohli · Sebastian Nowozin · John Winn · Antonio Criminisi -
2013 Poster: Multi-Task Bayesian Optimization »
Kevin Swersky · Jasper Snoek · Ryan Adams -
2013 Poster: A Determinantal Point Process Latent Variable Model for Inhibition in Neural Spiking Data »
Jasper Snoek · Richard Zemel · Ryan Adams -
2012 Poster: Practical Bayesian Optimization of Machine Learning Algorithms »
Jasper Snoek · Hugo Larochelle · Ryan Adams -
2011 Workshop: Optimization for Machine Learning »
Suvrit Sra · Stephen Wright · Sebastian Nowozin -
2011 Poster: Higher-Order Correlation Clustering for Image Segmentation »
Sungwoong Kim · Sebastian Nowozin · Pushmeet Kohli · Chang D. D Yoo -
2010 Workshop: Optimization for Machine Learning »
Suvrit Sra · Sebastian Nowozin · Stephen Wright -
2009 Workshop: Optimization for Machine Learning »
Sebastian Nowozin · Suvrit Sra · S.V.N Vishwanthan · Stephen Wright -
2008 Workshop: Optimization for Machine Learning »
Suvrit Sra · Sebastian Nowozin · Vishwanathan S V N