Poster
Universal Approximation of Input-Output Maps by Temporal Convolutional Nets
Joshua Hanson · Maxim Raginsky

Tue Dec 10th 10:45 AM -- 12:45 PM @ East Exhibition Hall B + C #158

There has been a recent shift in sequence-to-sequence modeling from recurrent network architectures to convolutional network architectures due to computational advantages in training and operation while still achieving competitive performance. For systems having limited long-term temporal dependencies, the approximation capability of recurrent networks is essentially equivalent to that of temporal convolutional nets (TCNs). We prove that TCNs can approximate a large class of input-output maps having approximately finite memory to arbitrary error tolerance. Furthermore, we derive quantitative approximation rates for deep ReLU TCNs in terms of the width and depth of the network and modulus of continuity of the original input-output map, and apply these results to input-output maps of systems that admit finite-dimensional state-space realizations (i.e., recurrent models).

Author Information

Joshua Hanson (University of Illinois at Urbana-Champaign)
Maxim Raginsky (University of Illinois at Urbana-Champaign)

More from the Same Authors