Timezone: »
There has been a recent shift in sequence-to-sequence modeling from recurrent network architectures to convolutional network architectures due to computational advantages in training and operation while still achieving competitive performance. For systems having limited long-term temporal dependencies, the approximation capability of recurrent networks is essentially equivalent to that of temporal convolutional nets (TCNs). We prove that TCNs can approximate a large class of input-output maps having approximately finite memory to arbitrary error tolerance. Furthermore, we derive quantitative approximation rates for deep ReLU TCNs in terms of the width and depth of the network and modulus of continuity of the original input-output map, and apply these results to input-output maps of systems that admit finite-dimensional state-space realizations (i.e., recurrent models).
Author Information
Joshua Hanson (University of Illinois at Urbana-Champaign)
Maxim Raginsky (University of Illinois at Urbana-Champaign)
More from the Same Authors
-
2021 Poster: Information-theoretic generalization bounds for black-box learning algorithms »
Hrayr Harutyunyan · Maxim Raginsky · Greg Ver Steeg · Aram Galstyan -
2018 Poster: Minimax Statistical Learning with Wasserstein distances »
Jaeho Lee · Maxim Raginsky -
2018 Spotlight: Minimax Statistical Learning with Wasserstein distances »
Jaeho Lee · Maxim Raginsky -
2017 Poster: Information-theoretic analysis of generalization capability of learning algorithms »
Aolin Xu · Maxim Raginsky -
2017 Spotlight: Information-theoretic analysis of generalization capability of learning algorithms »
Aolin Xu · Maxim Raginsky -
2011 Poster: Lower Bounds for Passive and Active Learning »
Maxim Raginsky · Sasha Rakhlin -
2011 Spotlight: Lower Bounds for Passive and Active Learning »
Maxim Raginsky · Sasha Rakhlin -
2009 Poster: Locality-sensitive binary codes from shift-invariant kernels »
Maxim Raginsky · Svetlana Lazebnik -
2009 Oral: Locality-Sensitive Binary Codes from Shift-Invariant Kernels »
Maxim Raginsky · Svetlana Lazebnik -
2008 Poster: Near-minimax recursive density estimation on the binary hypercube »
Maxim Raginsky · Svetlana Lazebnik · Rebecca Willett · Jorge G Silva -
2008 Spotlight: Near-minimax recursive density estimation on the binary hypercube »
Maxim Raginsky · Svetlana Lazebnik · Rebecca Willett · Jorge G Silva