Timezone: »
Poster
Sample Efficient Active Learning of Causal Trees
Kristjan Greenewald · Dmitriy Katz · Karthikeyan Shanmugam · Sara Magliacane · Murat Kocaoglu · Enric Boix-Adsera · Guy Bresler
Tue Dec 10 05:30 PM -- 07:30 PM (PST) @ East Exhibition Hall B + C #138
We consider the problem of experimental design for learning causal graphs that have a tree structure. We propose an adaptive framework that determines the next intervention based on a Bayesian prior updated with the outcomes of previous experiments, focusing on the setting where observational data is cheap (assumed infinite) and interventional data is expensive.
While information greedy approaches are popular in active learning, we show that in this setting they can be exponentially suboptimal (in the number of interventions required), and instead propose an algorithm that exploits graph structure in the form of a centrality measure.
If infinite interventional data is available, we show that the algorithm requires a number of interventions less than or equal to a factor of 2 times the minimum achievable number. We show that the algorithm and the associated theory can be adapted to the setting where each performed intervention yields finitely many samples. Several extensions are also presented, to the case where a specified set of nodes cannot be intervened on, to the case where $K$ interventions are scheduled at once, and to the fully adaptive case where each experiment yields only one sample.
In the case of finite interventional data, through simulated experiments we show that our algorithms outperform different adaptive baseline algorithms.
Author Information
Kristjan Greenewald (IBM Research)
Dmitriy Katz (IBM Research)
Karthikeyan Shanmugam (IBM Research, NY)
Sara Magliacane (MIT-IBM Watson AI Lab)
Murat Kocaoglu (MIT-IBM Watson AI Lab IBM Research, MA)
Enric Boix-Adsera (MIT)
Guy Bresler (MIT)
More from the Same Authors
-
2022 Workshop: A causal view on dynamical systems »
Sören Becker · Alexis Bellot · Cecilia Casolo · Niki Kilbertus · Sara Magliacane · Yuyang (Bernie) Wang -
2022 Poster: $k$-Sliced Mutual Information: A Quantitative Study of Scalability with Dimension »
Ziv Goldfeld · Kristjan Greenewald · Theshani Nuradha · Galen Reeves -
2022 Poster: GULP: a prediction-based metric between representations »
Enric Boix-Adsera · Hannah Lawrence · George Stepaniants · Philippe Rigollet -
2022 Poster: On the non-universality of deep learning: quantifying the cost of symmetry »
Emmanuel Abbe · Enric Boix-Adsera -
2022 Poster: Is this the Right Neighborhood? Accurate and Query Efficient Model Agnostic Explanations »
Amit Dhurandhar · Karthikeyan Natesan Ramamurthy · Karthikeyan Shanmugam -
2022 Poster: Factored Adaptation for Non-Stationary Reinforcement Learning »
Fan Feng · Biwei Huang · Kun Zhang · Sara Magliacane -
2022 Poster: Root Cause Analysis of Failures in Microservices through Causal Discovery »
Azam Ikram · Sarthak Chakraborty · Subrata Mitra · Shiv Saini · Saurabh Bagchi · Murat Kocaoglu -
2021 Workshop: New Frontiers in Federated Learning: Privacy, Fairness, Robustness, Personalization and Data Ownership »
Nghia Hoang · Lam Nguyen · Pin-Yu Chen · Tsui-Wei Weng · Sara Magliacane · Bryan Kian Hsiang Low · Anoop Deoras -
2021 Poster: CoFrNets: Interpretable Neural Architecture Inspired by Continued Fractions »
Isha Puri · Amit Dhurandhar · Tejaswini Pedapati · Karthikeyan Shanmugam · Dennis Wei · Kush Varshney -
2021 Poster: Finite-Sample Analysis of Off-Policy TD-Learning via Generalized Bellman Operators »
Zaiwei Chen · Siva Theja Maguluri · Sanjay Shakkottai · Karthikeyan Shanmugam -
2021 Poster: The staircase property: How hierarchical structure can guide deep learning »
Emmanuel Abbe · Enric Boix-Adsera · Matthew S Brennan · Guy Bresler · Dheeraj Nagaraj -
2021 Poster: Scalable Intervention Target Estimation in Linear Models »
Burak Varici · Karthikeyan Shanmugam · Prasanna Sattigeri · Ali Tajer -
2020 Workshop: Causal Discovery and Causality-Inspired Machine Learning »
Biwei Huang · Sara Magliacane · Kun Zhang · Danielle Belgrave · Elias Bareinboim · Daniel Malinsky · Thomas Richardson · Christopher Meek · Peter Spirtes · Bernhard Schölkopf -
2020 Poster: Sharp Representation Theorems for ReLU Networks with Precise Dependence on Depth »
Guy Bresler · Dheeraj Nagaraj -
2020 Poster: Asymptotic Guarantees for Generative Modeling Based on the Smooth Wasserstein Distance »
Ziv Goldfeld · Kristjan Greenewald · Kengo Kato -
2020 Poster: Active Structure Learning of Causal DAGs via Directed Clique Trees »
Chandler Squires · Sara Magliacane · Kristjan Greenewald · Dmitriy Katz · Murat Kocaoglu · Karthikeyan Shanmugam -
2020 Poster: Least Squares Regression with Markovian Data: Fundamental Limits and Algorithms »
Dheeraj Nagaraj · Xian Wu · Guy Bresler · Prateek Jain · Praneeth Netrapalli -
2020 Poster: Causal Discovery from Soft Interventions with Unknown Targets: Characterization and Learning »
Amin Jaber · Murat Kocaoglu · Karthikeyan Shanmugam · Elias Bareinboim -
2020 Poster: Mix and Match: An Optimistic Tree-Search Approach for Learning Models from Mixture Distributions »
Matthew Faw · Rajat Sen · Karthikeyan Shanmugam · Constantine Caramanis · Sanjay Shakkottai -
2020 Poster: Applications of Common Entropy for Causal Inference »
Murat Kocaoglu · Sanjay Shakkottai · Alex Dimakis · Constantine Caramanis · Sriram Vishwanath -
2020 Poster: Entropic Causal Inference: Identifiability and Finite Sample Results »
Spencer Compton · Murat Kocaoglu · Kristjan Greenewald · Dmitriy Katz -
2020 Poster: Learning Global Transparent Models consistent with Local Contrastive Explanations »
Tejaswini Pedapati · Avinash Balakrishnan · Karthikeyan Shanmugam · Amit Dhurandhar -
2020 Spotlight: Least Squares Regression with Markovian Data: Fundamental Limits and Algorithms »
Dheeraj Nagaraj · Xian Wu · Guy Bresler · Prateek Jain · Praneeth Netrapalli -
2020 Poster: Finite-Sample Analysis of Contractive Stochastic Approximation Using Smooth Convex Envelopes »
Zaiwei Chen · Siva Theja Maguluri · Sanjay Shakkottai · Karthikeyan Shanmugam -
2020 Poster: Learning Restricted Boltzmann Machines with Sparse Latent Variables »
Guy Bresler · Rares-Darius Buhai -
2019 Poster: Differentially Private Distributed Data Summarization under Covariate Shift »
Kanthi Sarpatwar · Karthikeyan Shanmugam · Venkata Sitaramagiridharganesh Ganapavarapu · Ashish Jagmohan · Roman Vaculin -
2019 Poster: Statistical Model Aggregation via Parameter Matching »
Mikhail Yurochkin · Mayank Agarwal · Soumya Ghosh · Kristjan Greenewald · Nghia Hoang -
2019 Poster: Characterization and Learning of Causal Graphs with Latent Variables from Soft Interventions »
Murat Kocaoglu · Amin Jaber · Karthikeyan Shanmugam · Elias Bareinboim -
2018 Poster: Sparse PCA from Sparse Linear Regression »
Guy Bresler · Sung Min Park · Madalina Persu -
2018 Poster: Experimental Design for Cost-Aware Learning of Causal Graphs »
Erik Lindgren · Murat Kocaoglu · Alex Dimakis · Sriram Vishwanath -
2018 Poster: Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions »
Sara Magliacane · Thijs van Ommen · Tom Claassen · Stephan Bongers · Philip Versteeg · Joris Mooij -
2018 Poster: Improving Simple Models with Confidence Profiles »
Amit Dhurandhar · Karthikeyan Shanmugam · Ronny Luss · Peder A Olsen -
2018 Poster: Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives »
Amit Dhurandhar · Pin-Yu Chen · Ronny Luss · Chun-Chen Tu · Paishun Ting · Karthikeyan Shanmugam · Payel Das -
2017 : Community Detection and Invariance to Distribution »
Guy Bresler -
2017 Poster: Experimental Design for Learning Causal Graphs with Latent Variables »
Murat Kocaoglu · Karthikeyan Shanmugam · Elias Bareinboim -
2017 Poster: Model-Powered Conditional Independence Test »
Rajat Sen · Ananda Theertha Suresh · Karthikeyan Shanmugam · Alex Dimakis · Sanjay Shakkottai -
2016 : Joint Causal Inference on Observational and Experimental Datasets »
Sara Magliacane -
2016 Poster: Ancestral Causal Inference »
Sara Magliacane · Tom Claassen · Joris Mooij -
2015 Poster: Learning Causal Graphs with Small Interventions »
Karthikeyan Shanmugam · Murat Kocaoglu · Alex Dimakis · Sriram Vishwanath -
2014 Poster: Sparse Polynomial Learning and Graph Sketching »
Murat Kocaoglu · Karthikeyan Shanmugam · Alex Dimakis · Adam Klivans -
2014 Poster: On the Information Theoretic Limits of Learning Ising Models »
Rashish Tandon · Karthikeyan Shanmugam · Pradeep Ravikumar · Alex Dimakis -
2014 Oral: Sparse Polynomial Learning and Graph Sketching »
Murat Kocaoglu · Karthikeyan Shanmugam · Alex Dimakis · Adam Klivans