Timezone: »
The challenge of learning the causal structure underlying a certain phenomenon is undertaken by connecting the set of conditional independences (CIs) readable from the observational data, on the one side, with the set of corresponding constraints implied over the graphical structure, on the other, which are tied through a graphical criterion known as d-separation (Pearl, 1988). In this paper, we investigate the more general scenario where multiple observational and experimental distributions are available. We start with the simple observation that the invariances given by CIs/d-separation are just one special type of a broader set of constraints, which follow from the careful comparison of the different distributions available. Remarkably, these new constraints are intrinsically connected with do-calculus (Pearl, 1995) in the context of soft-interventions. We introduce a novel notion of interventional equivalence class of causal graphs with latent variables based on these invariances, which associates each graphical structure with a set of interventional distributions that respect the do-calculus rules. Given a collection of distributions, two causal graphs are called interventionally equivalent if they are associated with the same family of interventional distributions, where the elements of the family are indistinguishable using the invariances obtained from a direct application of the calculus rules. We introduce a graphical representation that can be used to determine if two causal graphs are interventionally equivalent. We provide a formal graphical characterization of this equivalence. Finally, we extend the FCI algorithm, which was originally designed to operate based on CIs, to combine observational and interventional datasets, including new orientation rules particular to this setting.
Author Information
Murat Kocaoglu (MIT-IBM Watson AI Lab IBM Research, MA)
Amin Jaber (Purdue University)
Karthikeyan Shanmugam (IBM Research, NY)
Elias Bareinboim (Columbia University)
More from the Same Authors
-
2022 Panel: Panel 5A-2: Causal Identification under… & Markovian Interference in… »
Andrew Zheng · Amin Jaber -
2022 Poster: Causal Identification under Markov equivalence: Calculus, Algorithm, and Completeness »
Amin Jaber · Adele Ribeiro · Jiji Zhang · Elias Bareinboim -
2022 Poster: Is this the Right Neighborhood? Accurate and Query Efficient Model Agnostic Explanations »
Amit Dhurandhar · Karthikeyan Natesan Ramamurthy · Karthikeyan Shanmugam -
2022 Poster: Root Cause Analysis of Failures in Microservices through Causal Discovery »
Azam Ikram · Sarthak Chakraborty · Subrata Mitra · Shiv Saini · Saurabh Bagchi · Murat Kocaoglu -
2021 Poster: CoFrNets: Interpretable Neural Architecture Inspired by Continued Fractions »
Isha Puri · Amit Dhurandhar · Tejaswini Pedapati · Karthikeyan Shanmugam · Dennis Wei · Kush Varshney -
2021 Poster: Finite-Sample Analysis of Off-Policy TD-Learning via Generalized Bellman Operators »
Zaiwei Chen · Siva Theja Maguluri · Sanjay Shakkottai · Karthikeyan Shanmugam -
2021 Poster: Scalable Intervention Target Estimation in Linear Models »
Burak Varici · Karthikeyan Shanmugam · Prasanna Sattigeri · Ali Tajer -
2020 Poster: Active Structure Learning of Causal DAGs via Directed Clique Trees »
Chandler Squires · Sara Magliacane · Kristjan Greenewald · Dmitriy Katz · Murat Kocaoglu · Karthikeyan Shanmugam -
2020 Poster: Causal Discovery from Soft Interventions with Unknown Targets: Characterization and Learning »
Amin Jaber · Murat Kocaoglu · Karthikeyan Shanmugam · Elias Bareinboim -
2020 Poster: Mix and Match: An Optimistic Tree-Search Approach for Learning Models from Mixture Distributions »
Matthew Faw · Rajat Sen · Karthikeyan Shanmugam · Constantine Caramanis · Sanjay Shakkottai -
2020 Poster: Applications of Common Entropy for Causal Inference »
Murat Kocaoglu · Sanjay Shakkottai · Alex Dimakis · Constantine Caramanis · Sriram Vishwanath -
2020 Poster: Entropic Causal Inference: Identifiability and Finite Sample Results »
Spencer Compton · Murat Kocaoglu · Kristjan Greenewald · Dmitriy Katz -
2020 Poster: Learning Global Transparent Models consistent with Local Contrastive Explanations »
Tejaswini Pedapati · Avinash Balakrishnan · Karthikeyan Shanmugam · Amit Dhurandhar -
2020 Poster: Finite-Sample Analysis of Contractive Stochastic Approximation Using Smooth Convex Envelopes »
Zaiwei Chen · Siva Theja Maguluri · Sanjay Shakkottai · Karthikeyan Shanmugam -
2019 Poster: Differentially Private Distributed Data Summarization under Covariate Shift »
Kanthi Sarpatwar · Karthikeyan Shanmugam · Venkata Sitaramagiridharganesh Ganapavarapu · Ashish Jagmohan · Roman Vaculin -
2019 Poster: Near-Optimal Reinforcement Learning in Dynamic Treatment Regimes »
Junzhe Zhang · Elias Bareinboim -
2019 Poster: Sample Efficient Active Learning of Causal Trees »
Kristjan Greenewald · Dmitriy Katz · Karthikeyan Shanmugam · Sara Magliacane · Murat Kocaoglu · Enric Boix-Adsera · Guy Bresler -
2019 Poster: Efficient Identification in Linear Structural Causal Models with Instrumental Cutsets »
Daniel Kumor · Bryant Chen · Elias Bareinboim -
2019 Poster: Identification of Conditional Causal Effects under Markov Equivalence »
Amin Jaber · Jiji Zhang · Elias Bareinboim -
2019 Spotlight: Identification of Conditional Causal Effects under Markov Equivalence »
Amin Jaber · Jiji Zhang · Elias Bareinboim -
2018 : Datasets and Benchmarks for Causal Learning »
Csaba Szepesvari · Isabelle Guyon · Nicolai Meinshausen · David Blei · Elias Bareinboim · Bernhard Schölkopf · Pietro Perona -
2018 : Causality and Transfer Learning »
Elias Bareinboim -
2018 Poster: Structural Causal Bandits: Where to Intervene? »
Sanghack Lee · Elias Bareinboim -
2018 Poster: Experimental Design for Cost-Aware Learning of Causal Graphs »
Erik Lindgren · Murat Kocaoglu · Alex Dimakis · Sriram Vishwanath -
2018 Poster: Equality of Opportunity in Classification: A Causal Approach »
Junzhe Zhang · Elias Bareinboim -
2018 Poster: Improving Simple Models with Confidence Profiles »
Amit Dhurandhar · Karthikeyan Shanmugam · Ronny Luss · Peder A Olsen -
2018 Poster: Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives »
Amit Dhurandhar · Pin-Yu Chen · Ronny Luss · Chun-Chen Tu · Paishun Ting · Karthikeyan Shanmugam · Payel Das -
2017 Poster: Experimental Design for Learning Causal Graphs with Latent Variables »
Murat Kocaoglu · Karthikeyan Shanmugam · Elias Bareinboim -
2017 Poster: Model-Powered Conditional Independence Test »
Rajat Sen · Ananda Theertha Suresh · Karthikeyan Shanmugam · Alex Dimakis · Sanjay Shakkottai -
2016 : The Data-Fusion Problem: Causal Inference and Reinforcement Learning »
Elias Bareinboim -
2015 Poster: Learning Causal Graphs with Small Interventions »
Karthikeyan Shanmugam · Murat Kocaoglu · Alex Dimakis · Sriram Vishwanath -
2015 Poster: Bandits with Unobserved Confounders: A Causal Approach »
Elias Bareinboim · Andrew Forney · Judea Pearl -
2014 Poster: Transportability from Multiple Environments with Limited Experiments: Completeness Results »
Elias Bareinboim · Judea Pearl -
2014 Spotlight: Transportability from Multiple Environments with Limited Experiments: Completeness Results »
Elias Bareinboim · Judea Pearl -
2014 Poster: Sparse Polynomial Learning and Graph Sketching »
Murat Kocaoglu · Karthikeyan Shanmugam · Alex Dimakis · Adam Klivans -
2014 Poster: On the Information Theoretic Limits of Learning Ising Models »
Rashish Tandon · Karthikeyan Shanmugam · Pradeep Ravikumar · Alex Dimakis -
2014 Oral: Sparse Polynomial Learning and Graph Sketching »
Murat Kocaoglu · Karthikeyan Shanmugam · Alex Dimakis · Adam Klivans -
2013 Poster: Transportability from Multiple Environments with Limited Experiments »
Elias Bareinboim · Sanghack Lee · Vasant Honavar · Judea Pearl -
2013 Tutorial: Causes and Counterfactuals: Concepts, Principles and Tools. »
Judea Pearl · Elias Bareinboim