Timezone: »
Humans and animals are capable of flexibly switching between a multitude of tasks, each requiring rapid, sensory-informed decision making. Incoming stimuli are processed by a hierarchy of neural circuits consisting of millions of neurons with diverse feature selectivity. At any given moment, only a small subset of these carry task-relevant information.
In principle, downstream processing stages could identify the relevant neurons through supervised learning, but this would require many example trials. Such extensive learning periods are inconsistent with the observed flexibility of humans or animals, who can adjust to changes in task parameters or structure almost immediately.
Here, we propose a novel solution based on functionally-targeted stochastic modulation. It has been observed that trial-to-trial neural activity is modulated by a shared, low-dimensional, stochastic signal that introduces task-irrelevant noise. Counter-intuitively this noise is preferentially targeted towards task-informative neurons, corrupting the encoded signal. However, we hypothesize that this modulation offers a solution to the identification problem, labeling task-informative neurons so as to facilitate decoding. We simulate an encoding population of spiking neurons whose rates are modulated by a shared stochastic signal, and show that a linear decoder with readout weights approximating neuron-specific modulation strength can achieve near-optimal accuracy. Such a decoder allows fast and flexible task-dependent information routing without relying on hardwired knowledge of the task-informative neurons (as in maximum likelihood) or unrealistically many supervised training trials (as in regression).
Author Information
Caroline Haimerl (New York University)
Cristina Savin (NYU)
Eero Simoncelli (HHMI / New York University)
Eero P. Simoncelli received the B.S. degree in Physics in 1984 from Harvard University, studied applied mathematics at Cambridge University for a year and a half, and then received the M.S. degree in 1988 and the Ph.D. degree in 1993, both in Electrical Engineering from the Massachusetts Institute of Technology. He was an Assistant Professor in the Computer and Information Science department at the University of Pennsylvania from 1993 until 1996. He moved to New York University in September of 1996, where he is currently a Professor in Neural Science, Mathematics, and Psychology. In August 2000, he became an Associate Investigator of the Howard Hughes Medical Institute, under their new program in Computational Biology. His research interests span a wide range of topics in the representation and analysis of visual images, in both machine and biological systems.
More from the Same Authors
-
2020 Poster: Learning efficient task-dependent representations with synaptic plasticity »
Colin Bredenberg · Eero Simoncelli · Cristina Savin -
2017 Poster: Eigen-Distortions of Hierarchical Representations »
Alexander Berardino · Valero Laparra · Johannes BallĂ© · Eero Simoncelli -
2017 Oral: Eigen-Distortions of Hierarchical Representations »
Alexander Berardino · Valero Laparra · Johannes BallĂ© · Eero Simoncelli -
2012 Poster: Efficient and direct estimation of a neural subunit model for sensory coding »
Brett Vintch · Andrew Zaharia · J Movshon · Eero Simoncelli -
2012 Poster: Hierarchical spike coding of sound »
yan karklin · Chaitanya Ekanadham · Eero Simoncelli -
2012 Spotlight: Hierarchical spike coding of sound »
yan karklin · Chaitanya Ekanadham · Eero Simoncelli -
2011 Poster: Efficient coding with a population of Linear-Nonlinear neurons »
yan karklin · Eero Simoncelli -
2011 Poster: A blind sparse deconvolution method for neural spike identification »
Chaitanya Ekanadham · Daniel Tranchina · Eero Simoncelli -
2011 Spotlight: A blind sparse deconvolution method for neural spike identification »
Chaitanya Ekanadham · Daniel Tranchina · Eero Simoncelli -
2010 Poster: Implicit encoding of prior probabilities in optimal neural populations »
Deep Ganguli · Eero Simoncelli -
2009 Poster: Hierarchical Modeling of Local Image Features through $L_p$-Nested Symmetric Distributions »
Fabian H Sinz · Eero Simoncelli · Matthias Bethge -
2008 Oral: Reducing statistical dependencies in natural signals using radial Gaussianization »
Siwei Lyu · Eero Simoncelli -
2008 Poster: Reducing statistical dependencies in natural signals using radial Gaussianization »
Siwei Lyu · Eero Simoncelli -
2008 Tutorial: Statistical Models of Visual Images »
Eero Simoncelli -
2007 Poster: A Bayesian Model of Conditioned Perception »
Alan A Stocker · Eero Simoncelli -
2006 Poster: Statistical Modeling of Images with Fields of Gaussian Scale Mixtures »
Siwei Lyu · Eero Simoncelli -
2006 Poster: Learning to be Bayesian without Supervision »
Martin Raphan · Eero Simoncelli