Timezone: »

 
Poster
Invariance-inducing regularization using worst-case transformations suffices to boost accuracy and spatial robustness
Fanny Yang · Zuowen Wang · Christina Heinze-Deml

Thu Dec 12 10:45 AM -- 12:45 PM (PST) @ East Exhibition Hall B + C #17

This work provides theoretical and empirical evidence that invariance-inducing regularizers can increase predictive accuracy for worst-case spatial transformations (spatial robustness). Evaluated on these adversarially transformed examples, standard and adversarial training with such regularizers achieves a relative error reduction of 20% for CIFAR-10 with the same computational budget. This even surpasses handcrafted spatial-equivariant networks. Furthermore, we observe for SVHN, known to have inherent variance in orientation, that robust training also improves standard accuracy on the test set. We prove that this no-trade-off phenomenon holds for adversarial examples from transformation groups.

Author Information

Fanny Yang (Stanford University, ETH Zurich)
Zuowen Wang (ETH Zurich)
Christina Heinze-Deml (ETH Zurich)