Timezone: »

Understanding the Representation Power of Graph Neural Networks in Learning Graph Topology
Nima Dehmamy · Albert-Laszlo Barabasi · Rose Yu

Thu Dec 12 05:00 PM -- 07:00 PM (PST) @ East Exhibition Hall B + C #37

To deepen our understanding of graph neural networks, we investigate the representation power of Graph Convolutional Networks (GCN) through the looking glass of graph moments, a key property of graph topology encoding path of various lengths. We find that GCNs are rather restrictive in learning graph moments. Without careful design, GCNs can fail miserably even with multiple layers and nonlinear activation functions. We analyze theoretically the expressiveness of GCNs, arriving at a modular GCN design, using different propagation rules. Our modular design is capable of distinguishing graphs from different graph generation models for surprisingly small graphs, a notoriously difficult problem in network science. Our investigation suggests that, depth is much more influential than width and deeper GCNs are more capable of learning higher order graph moments. Additionally, combining GCN modules with different propagation rules is critical to the representation power of GCNs.

Author Information

Nima Dehmamy (Northeastern University)
Albert-Laszlo Barabasi (Northeastern University)
Rose Yu (Northeastern University)

More from the Same Authors

  • 2021 Poster: Automatic Symmetry Discovery with Lie Algebra Convolutional Network »
    Nima Dehmamy · Robin Walters · Yanchen Liu · Dashun Wang · Rose Yu
  • 2019 : Afternoon Coffee Break & Poster Session »
    Heidi Komkov · Stanislav Fort · Zhaoyou Wang · Rose Yu · Ji Hwan Park · Sam Schoenholz · Taoli Cheng · Ryan-Rhys Griffiths · Chase Shimmin · Surya Karthik Mukkavili · Philippe Schwaller · Christian Knoll · Andrew Sun · Keiichi Kisamori · Gavin Graham · Gavin Portwood · Hsin-Yuan Huang · Paul Novello · Moritz Munchmeyer · Anna Jungbluth · Daniel Levine · Ibrahim Ayed · Steven Atkinson · Jan Hermann · Peter Grönquist · kara.lamb · Priyabrata Saha · Nick Glaser · Lingge Li · Yutaro Iiyama · Rushil Anirudh · Maciej Koch-Janusz · Vikram Sundar · Francois Lanusse · Auralee Edelen · Jonas Köhler · Jacky Yip · jiadong guo · Xiangyang Ju · Adi Hanuka · Adrian Albert · Valentina Salvatelli · Mauro Verzetti · Javier Duarte · Eric Moreno · Emmanuel de Bézenac · Athanasios Vlontzos · Alok Singh · Thomas Klijnsma · Brad Neuberg · Paul Wright · Mustafa Mustafa · David Schmidt · Steven Farrell · Hao Sun
  • 2019 : Towards physics-informed deep learning for turbulent flow prediction »
    Rose Yu
  • 2019 Poster: NAOMI: Non-Autoregressive Multiresolution Sequence Imputation »
    Yukai Liu · Rose Yu · Stephan Zheng · Eric Zhan · Yisong Yue