Timezone: »
Mutual information maximization has emerged as a powerful learning objective for unsupervised representation learning obtaining state-of-the-art performance in applications such as object recognition, speech recognition, and reinforcement learning. However, such approaches are fundamentally limited since a tight lower bound on mutual information requires sample size exponential in the mutual information. This limits the applicability of these approaches for prediction tasks with high mutual information, such as in video understanding or reinforcement learning. In these settings, such techniques are prone to overfit, both in theory and in practice, and capture only a few of the relevant factors of variation. This leads to incomplete representations that are not optimal for downstream tasks. In this work, we empirically demonstrate that mutual information-based representation learning approaches do fail to learn complete representations on a number of designed and real-world tasks. To mitigate these problems we introduce the Wasserstein dependency measure, which learns more complete representations by using the Wasserstein distance instead of the KL divergence in the mutual information estimator. We show that a practical approximation to this theoretically motivated solution, constructed using Lipschitz constraint techniques from the GAN literature, achieves substantially improved results on tasks where incomplete representations are a major challenge.
Author Information
Sherjil Ozair (Mila, Université de Montréal)
Corey Lynch (Google Brain)
Yoshua Bengio (Mila)
Yoshua Bengio is Full Professor in the computer science and operations research department at U. Montreal, scientific director and founder of Mila and of IVADO, Turing Award 2018 recipient, Canada Research Chair in Statistical Learning Algorithms, as well as a Canada AI CIFAR Chair. He pioneered deep learning and has been getting the most citations per day in 2018 among all computer scientists, worldwide. He is an officer of the Order of Canada, member of the Royal Society of Canada, was awarded the Killam Prize, the Marie-Victorin Prize and the Radio-Canada Scientist of the year in 2017, and he is a member of the NeurIPS advisory board and co-founder of the ICLR conference, as well as program director of the CIFAR program on Learning in Machines and Brains. His goal is to contribute to uncover the principles giving rise to intelligence through learning, as well as favour the development of AI for the benefit of all.
Aaron van den Oord (Google Deepmind)
Sergey Levine (UC Berkeley)
Pierre Sermanet (Google Brain)
More from the Same Authors
-
2020 Workshop: Tackling Climate Change with ML »
David Dao · Evan Sherwin · Priya Donti · Lauren Kuntz · Lynn Kaack · Yumna Yusuf · David Rolnick · Catherine Nakalembe · Claire Monteleoni · Yoshua Bengio -
2020 Poster: Model Inversion Networks for Model-Based Optimization »
Aviral Kumar · Sergey Levine -
2020 Poster: Untangling tradeoffs between recurrence and self-attention in artificial neural networks »
Giancarlo Kerg · Bhargav Kanuparthi · Anirudh Goyal ALIAS PARTH GOYAL · Kyle Goyette · Yoshua Bengio · Guillaume Lajoie -
2020 Poster: Your GAN is Secretly an Energy-based Model and You Should Use Discriminator Driven Latent Sampling »
Tong Che · Ruixiang ZHANG · Jascha Sohl-Dickstein · Hugo Larochelle · Liam Paull · Yuan Cao · Yoshua Bengio -
2020 Poster: Continual Learning of Control Primitives : Skill Discovery via Reset-Games »
Kelvin Xu · Siddharth Verma · Chelsea Finn · Sergey Levine -
2020 Poster: Gradient Surgery for Multi-Task Learning »
Tianhe Yu · Saurabh Kumar · Abhishek Gupta · Sergey Levine · Karol Hausman · Chelsea Finn -
2020 Poster: Hybrid Models for Learning to Branch »
Prateek Gupta · Maxime Gasse · Elias Khalil · Pawan K Mudigonda · Andrea Lodi · Yoshua Bengio -
2020 Poster: Rewriting History with Inverse RL: Hindsight Inference for Policy Improvement »
Ben Eysenbach · XINYANG GENG · Sergey Levine · Russ Salakhutdinov -
2020 Poster: Conservative Q-Learning for Offline Reinforcement Learning »
Aviral Kumar · Aurick Zhou · George Tucker · Sergey Levine -
2020 Oral: Rewriting History with Inverse RL: Hindsight Inference for Policy Improvement »
Ben Eysenbach · XINYANG GENG · Sergey Levine · Russ Salakhutdinov -
2020 Tutorial: (Track3) Offline Reinforcement Learning: From Algorithm Design to Practical Applications Q&A »
Sergey Levine · Aviral Kumar -
2020 Poster: Gamma-Models: Generative Temporal Difference Learning for Infinite-Horizon Prediction »
Michael Janner · Igor Mordatch · Sergey Levine -
2020 Poster: One Solution is Not All You Need: Few-Shot Extrapolation via Structured MaxEnt RL »
Saurabh Kumar · Aviral Kumar · Sergey Levine · Chelsea Finn -
2020 Poster: Long-Horizon Visual Planning with Goal-Conditioned Hierarchical Predictors »
Karl Pertsch · Oleh Rybkin · Frederik Ebert · Shenghao Zhou · Dinesh Jayaraman · Chelsea Finn · Sergey Levine -
2020 Poster: Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a Latent Variable Model »
Alex X. Lee · Anusha Nagabandi · Pieter Abbeel · Sergey Levine -
2020 Poster: Emergent Complexity and Zero-shot Transfer via Unsupervised Environment Design »
Michael Dennis · Natasha Jaques · Eugene Vinitsky · Alexandre Bayen · Stuart Russell · Andrew Critch · Sergey Levine -
2020 Poster: MOPO: Model-based Offline Policy Optimization »
Tianhe Yu · Garrett Thomas · Lantao Yu · Stefano Ermon · James Zou · Sergey Levine · Chelsea Finn · Tengyu Ma -
2020 Poster: DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction »
Aviral Kumar · Abhishek Gupta · Sergey Levine -
2020 Spotlight: DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction »
Aviral Kumar · Abhishek Gupta · Sergey Levine -
2020 Oral: Emergent Complexity and Zero-shot Transfer via Unsupervised Environment Design »
Michael Dennis · Natasha Jaques · Eugene Vinitsky · Alexandre Bayen · Stuart Russell · Andrew Critch · Sergey Levine -
2020 Tutorial: (Track3) Offline Reinforcement Learning: From Algorithm Design to Practical Applications »
Sergey Levine · Aviral Kumar -
2019 Workshop: Joint Workshop on AI for Social Good »
Fei Fang · Joseph Bullock · Marc-Antoine Dilhac · Brian Green · natalie saltiel · Dhaval Adjodah · Jack Clark · Sean McGregor · Margaux Luck · Jonathan Penn · Tristan Sylvain · Geneviève Boucher · Sydney Swaine-Simon · Girmaw Abebe Tadesse · Myriam Côté · Anna Bethke · Yoshua Bengio -
2019 Workshop: Tackling Climate Change with ML »
David Rolnick · Priya Donti · Lynn Kaack · Alexandre Lacoste · Tegan Maharaj · Andrew Ng · John Platt · Jennifer Chayes · Yoshua Bengio -
2019 Workshop: Retrospectives: A Venue for Self-Reflection in ML Research »
Ryan Lowe · Yoshua Bengio · Joelle Pineau · Michela Paganini · Jessica Forde · Shagun Sodhani · Abhishek Gupta · Joel Lehman · Peter Henderson · Kanika Madan · Koustuv Sinha · Xavier Bouthillier -
2019 Poster: How to Initialize your Network? Robust Initialization for WeightNorm & ResNets »
Devansh Arpit · Víctor Campos · Yoshua Bengio -
2019 Poster: Unsupervised State Representation Learning in Atari »
Ankesh Anand · Evan Racah · Sherjil Ozair · Yoshua Bengio · Marc-Alexandre Côté · R Devon Hjelm -
2019 Poster: Shaping Belief States with Generative Environment Models for RL »
Karol Gregor · Danilo Jimenez Rezende · Frederic Besse · Yan Wu · Hamza Merzic · Aaron van den Oord -
2019 Poster: Planning with Goal-Conditioned Policies »
Soroush Nasiriany · Vitchyr Pong · Steven Lin · Sergey Levine -
2019 Poster: Search on the Replay Buffer: Bridging Planning and Reinforcement Learning »
Ben Eysenbach · Russ Salakhutdinov · Sergey Levine -
2019 Poster: MCP: Learning Composable Hierarchical Control with Multiplicative Compositional Policies »
Xue Bin Peng · Michael Chang · Grace Zhang · Pieter Abbeel · Sergey Levine -
2019 Poster: Variational Temporal Abstraction »
Taesup Kim · Sungjin Ahn · Yoshua Bengio -
2019 Poster: Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction »
Aviral Kumar · Justin Fu · George Tucker · Sergey Levine -
2019 Poster: Gradient based sample selection for online continual learning »
Rahaf Aljundi · Min Lin · Baptiste Goujaud · Yoshua Bengio -
2019 Poster: Generating Diverse High-Fidelity Images with VQ-VAE-2 »
Ali Razavi · Aaron van den Oord · Oriol Vinyals -
2019 Poster: MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis »
Kundan Kumar · Rithesh Kumar · Thibault de Boissiere · Lucas Gestin · Wei Zhen Teoh · Jose Sotelo · Alexandre de Brébisson · Yoshua Bengio · Aaron Courville -
2019 Poster: Unsupervised Curricula for Visual Meta-Reinforcement Learning »
Allan Jabri · Kyle Hsu · Abhishek Gupta · Ben Eysenbach · Sergey Levine · Chelsea Finn -
2019 Invited Talk (Posner Lecture): From System 1 Deep Learning to System 2 Deep Learning »
Yoshua Bengio -
2019 Poster: Compositional Plan Vectors »
Coline Devin · Daniel Geng · Pieter Abbeel · Trevor Darrell · Sergey Levine -
2019 Spotlight: Unsupervised Curricula for Visual Meta-Reinforcement Learning »
Allan Jabri · Kyle Hsu · Abhishek Gupta · Ben Eysenbach · Sergey Levine · Chelsea Finn -
2019 Poster: Causal Confusion in Imitation Learning »
Pim de Haan · Dinesh Jayaraman · Sergey Levine -
2019 Poster: Meta-Learning with Implicit Gradients »
Aravind Rajeswaran · Chelsea Finn · Sham Kakade · Sergey Levine -
2019 Poster: On Adversarial Mixup Resynthesis »
Christopher Beckham · Sina Honari · Alex Lamb · Vikas Verma · Farnoosh Ghadiri · R Devon Hjelm · Yoshua Bengio · Chris Pal -
2019 Poster: When to Trust Your Model: Model-Based Policy Optimization »
Michael Janner · Justin Fu · Marvin Zhang · Sergey Levine -
2019 Poster: Guided Meta-Policy Search »
Russell Mendonca · Abhishek Gupta · Rosen Kralev · Pieter Abbeel · Sergey Levine · Chelsea Finn -
2019 Spotlight: Guided Meta-Policy Search »
Russell Mendonca · Abhishek Gupta · Rosen Kralev · Pieter Abbeel · Sergey Levine · Chelsea Finn -
2019 Oral: Causal Confusion in Imitation Learning »
Pim de Haan · Dinesh Jayaraman · Sergey Levine -
2019 Poster: Updates of Equilibrium Prop Match Gradients of Backprop Through Time in an RNN with Static Input »
Maxence Ernoult · Julie Grollier · Damien Querlioz · Yoshua Bengio · Benjamin Scellier -
2019 Poster: Non-normal Recurrent Neural Network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics »
Giancarlo Kerg · Kyle Goyette · Maximilian Puelma Touzel · Gauthier Gidel · Eugene Vorontsov · Yoshua Bengio · Guillaume Lajoie -
2019 Oral: Updates of Equilibrium Prop Match Gradients of Backprop Through Time in an RNN with Static Input »
Maxence Ernoult · Julie Grollier · Damien Querlioz · Yoshua Bengio · Benjamin Scellier -
2018 Workshop: AI for social good »
Margaux Luck · Tristan Sylvain · Joseph Paul Cohen · Arsene Fansi Tchango · Valentine Goddard · Aurelie Helouis · Yoshua Bengio · Samuel Greydanus · Cody Wild · Taras Kucherenko · Arya Farahi · Jonathan Penn · Sean McGregor · Mark Crowley · Abhishek Gupta · Kenny Chen · Myriam Côté · Rediet Abebe -
2018 Poster: Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models »
Kurtland Chua · Roberto Calandra · Rowan McAllister · Sergey Levine -
2018 Spotlight: Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models »
Kurtland Chua · Roberto Calandra · Rowan McAllister · Sergey Levine -
2018 Poster: Image-to-image translation for cross-domain disentanglement »
Abel Gonzalez-Garcia · Joost van de Weijer · Yoshua Bengio -
2018 Poster: Probabilistic Model-Agnostic Meta-Learning »
Chelsea Finn · Kelvin Xu · Sergey Levine -
2018 Poster: Meta-Reinforcement Learning of Structured Exploration Strategies »
Abhishek Gupta · Russell Mendonca · YuXuan Liu · Pieter Abbeel · Sergey Levine -
2018 Poster: Visual Reinforcement Learning with Imagined Goals »
Ashvin Nair · Vitchyr Pong · Murtaza Dalal · Shikhar Bahl · Steven Lin · Sergey Levine -
2018 Spotlight: Visual Reinforcement Learning with Imagined Goals »
Ashvin Nair · Vitchyr Pong · Murtaza Dalal · Shikhar Bahl · Steven Lin · Sergey Levine -
2018 Spotlight: Meta-Reinforcement Learning of Structured Exploration Strategies »
Abhishek Gupta · Russell Mendonca · YuXuan Liu · Pieter Abbeel · Sergey Levine -
2018 Poster: Visual Memory for Robust Path Following »
Ashish Kumar · Saurabh Gupta · David Fouhey · Sergey Levine · Jitendra Malik -
2018 Poster: MetaGAN: An Adversarial Approach to Few-Shot Learning »
Ruixiang ZHANG · Tong Che · Zoubin Ghahramani · Yoshua Bengio · Yangqiu Song -
2018 Poster: Variational Inverse Control with Events: A General Framework for Data-Driven Reward Definition »
Justin Fu · Avi Singh · Dibya Ghosh · Larry Yang · Sergey Levine -
2018 Oral: Visual Memory for Robust Path Following »
Ashish Kumar · Saurabh Gupta · David Fouhey · Sergey Levine · Jitendra Malik -
2018 Poster: Data-Efficient Hierarchical Reinforcement Learning »
Ofir Nachum · Shixiang (Shane) Gu · Honglak Lee · Sergey Levine -
2018 Poster: Bayesian Model-Agnostic Meta-Learning »
Jaesik Yoon · Taesup Kim · Ousmane Dia · Sungwoong Kim · Yoshua Bengio · Sungjin Ahn -
2018 Poster: Sparse Attentive Backtracking: Temporal Credit Assignment Through Reminding »
Nan Rosemary Ke · Anirudh Goyal ALIAS PARTH GOYAL · Olexa Bilaniuk · Jonathan Binas · Michael Mozer · Chris Pal · Yoshua Bengio -
2018 Poster: The challenge of realistic music generation: modelling raw audio at scale »
Sander Dieleman · Aaron van den Oord · Karen Simonyan -
2018 Spotlight: Sparse Attentive Backtracking: Temporal Credit Assignment Through Reminding »
Nan Rosemary Ke · Anirudh Goyal ALIAS PARTH GOYAL · Olexa Bilaniuk · Jonathan Binas · Michael Mozer · Chris Pal · Yoshua Bengio -
2018 Spotlight: Bayesian Model-Agnostic Meta-Learning »
Jaesik Yoon · Taesup Kim · Ousmane Dia · Sungwoong Kim · Yoshua Bengio · Sungjin Ahn -
2018 Poster: Where Do You Think You're Going?: Inferring Beliefs about Dynamics from Behavior »
Sid Reddy · Anca Dragan · Sergey Levine -
2018 Poster: Dendritic cortical microcircuits approximate the backpropagation algorithm »
João Sacramento · Rui Ponte Costa · Yoshua Bengio · Walter Senn -
2018 Oral: Dendritic cortical microcircuits approximate the backpropagation algorithm »
João Sacramento · Rui Ponte Costa · Yoshua Bengio · Walter Senn -
2017 Workshop: Workshop on Meta-Learning »
Roberto Calandra · Frank Hutter · Hugo Larochelle · Sergey Levine -
2017 Poster: EX2: Exploration with Exemplar Models for Deep Reinforcement Learning »
Justin Fu · John Co-Reyes · Sergey Levine -
2017 Poster: Variational Walkback: Learning a Transition Operator as a Stochastic Recurrent Net »
Anirudh Goyal ALIAS PARTH GOYAL · Nan Rosemary Ke · Surya Ganguli · Yoshua Bengio -
2017 Spotlight: EX2: Exploration with Exemplar Models for Deep Reinforcement Learning »
Justin Fu · John Co-Reyes · Sergey Levine -
2017 Demonstration: A Deep Reinforcement Learning Chatbot »
Iulian Vlad Serban · Chinnadhurai Sankar · Mathieu Germain · Saizheng Zhang · Zhouhan Lin · Sandeep Subramanian · Taesup Kim · Michael Pieper · Sarath Chandar Anbil Parthipan · Nan Rosemary Ke · Sai Rajeswar Mudumba · Alexandre de Brébisson · Jose Sotelo · Dendi A Suhubdy · Vincent Michalski · Joelle Pineau · Yoshua Bengio -
2017 Demonstration: Deep Robotic Learning using Visual Imagination and Meta-Learning »
Chelsea Finn · Frederik Ebert · Tianhe Yu · Annie Xie · Sudeep Dasari · Pieter Abbeel · Sergey Levine -
2017 Poster: GibbsNet: Iterative Adversarial Inference for Deep Graphical Models »
Alex Lamb · R Devon Hjelm · Yaroslav Ganin · Joseph Paul Cohen · Aaron Courville · Yoshua Bengio -
2017 Poster: Neural Discrete Representation Learning »
Aaron van den Oord · Oriol Vinyals · koray kavukcuoglu -
2017 Poster: Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning »
Shixiang (Shane) Gu · Timothy Lillicrap · Richard Turner · Zoubin Ghahramani · Bernhard Schölkopf · Sergey Levine -
2017 Poster: Plan, Attend, Generate: Planning for Sequence-to-Sequence Models »
Caglar Gulcehre · Francis Dutil · Adam Trischler · Yoshua Bengio -
2017 Poster: Z-Forcing: Training Stochastic Recurrent Networks »
Anirudh Goyal ALIAS PARTH GOYAL · Alessandro Sordoni · Marc-Alexandre Côté · Nan Rosemary Ke · Yoshua Bengio -
2016 Workshop: Deep Learning for Action and Interaction »
Chelsea Finn · Raia Hadsell · David Held · Sergey Levine · Percy Liang -
2016 Symposium: Deep Learning Symposium »
Yoshua Bengio · Yann LeCun · Navdeep Jaitly · Roger Grosse -
2016 Poster: Conditional Image Generation with PixelCNN Decoders »
Aaron van den Oord · Nal Kalchbrenner · Lasse Espeholt · koray kavukcuoglu · Oriol Vinyals · Alex Graves -
2016 Poster: Architectural Complexity Measures of Recurrent Neural Networks »
Saizheng Zhang · Yuhuai Wu · Tong Che · Zhouhan Lin · Roland Memisevic · Russ Salakhutdinov · Yoshua Bengio -
2016 Poster: Professor Forcing: A New Algorithm for Training Recurrent Networks »
Alex M Lamb · Anirudh Goyal ALIAS PARTH GOYAL · Ying Zhang · Saizheng Zhang · Aaron Courville · Yoshua Bengio -
2016 Poster: On Multiplicative Integration with Recurrent Neural Networks »
Yuhuai Wu · Saizheng Zhang · Ying Zhang · Yoshua Bengio · Russ Salakhutdinov -
2016 Poster: Value Iteration Networks »
Aviv Tamar · Sergey Levine · Pieter Abbeel · YI WU · Garrett Thomas -
2016 Oral: Value Iteration Networks »
Aviv Tamar · Sergey Levine · Pieter Abbeel · YI WU · Garrett Thomas -
2016 Poster: Binarized Neural Networks »
Itay Hubara · Matthieu Courbariaux · Daniel Soudry · Ran El-Yaniv · Yoshua Bengio -
2015 Symposium: Deep Learning Symposium »
Yoshua Bengio · Marc'Aurelio Ranzato · Honglak Lee · Max Welling · Andrew Y Ng -
2015 Poster: Attention-Based Models for Speech Recognition »
Jan K Chorowski · Dzmitry Bahdanau · Dmitriy Serdyuk · Kyunghyun Cho · Yoshua Bengio -
2015 Poster: Equilibrated adaptive learning rates for non-convex optimization »
Yann Dauphin · Harm de Vries · Yoshua Bengio -
2015 Spotlight: Equilibrated adaptive learning rates for non-convex optimization »
Yann Dauphin · Harm de Vries · Yoshua Bengio -
2015 Spotlight: Attention-Based Models for Speech Recognition »
Jan K Chorowski · Dzmitry Bahdanau · Dmitriy Serdyuk · Kyunghyun Cho · Yoshua Bengio -
2015 Demonstration: Vitruvian Science: a visual editor for quickly building neural networks in the cloud »
Markus Beissinger · Sherjil Ozair -
2015 Poster: A Recurrent Latent Variable Model for Sequential Data »
Junyoung Chung · Kyle Kastner · Laurent Dinh · Kratarth Goel · Aaron Courville · Yoshua Bengio -
2015 Poster: BinaryConnect: Training Deep Neural Networks with binary weights during propagations »
Matthieu Courbariaux · Yoshua Bengio · Jean-Pierre David -
2015 Tutorial: Deep Learning »
Geoffrey E Hinton · Yoshua Bengio · Yann LeCun -
2014 Workshop: Novel Trends and Applications in Reinforcement Learning »
Csaba Szepesvari · Marc Deisenroth · Sergey Levine · Pedro Ortega · Brian Ziebart · Emma Brunskill · Naftali Tishby · Gerhard Neumann · Daniel Lee · Sridhar Mahadevan · Pieter Abbeel · David Silver · Vicenç Gómez -
2014 Workshop: Second Workshop on Transfer and Multi-Task Learning: Theory meets Practice »
Urun Dogan · Tatiana Tommasi · Yoshua Bengio · Francesco Orabona · Marius Kloft · Andres Munoz · Gunnar Rätsch · Hal Daumé III · Mehryar Mohri · Xuezhi Wang · Daniel Hernández-lobato · Song Liu · Thomas Unterthiner · Pascal Germain · Vinay P Namboodiri · Michael Goetz · Christopher Berlind · Sigurd Spieckermann · Marta Soare · Yujia Li · Vitaly Kuznetsov · Wenzhao Lian · Daniele Calandriello · Emilie Morvant -
2014 Workshop: Deep Learning and Representation Learning »
Andrew Y Ng · Yoshua Bengio · Adam Coates · Roland Memisevic · Sharanyan Chetlur · Geoffrey E Hinton · Shamim Nemati · Bryan Catanzaro · Surya Ganguli · Herbert Jaeger · Phil Blunsom · Leon Bottou · Volodymyr Mnih · Chen-Yu Lee · Rich M Schwartz -
2014 Workshop: OPT2014: Optimization for Machine Learning »
Zaid Harchaoui · Suvrit Sra · Alekh Agarwal · Martin Jaggi · Miro Dudik · Aaditya Ramdas · Jean Lasserre · Yoshua Bengio · Amir Beck -
2014 Poster: How transferable are features in deep neural networks? »
Jason Yosinski · Jeff Clune · Yoshua Bengio · Hod Lipson -
2014 Poster: Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics »
Sergey Levine · Pieter Abbeel -
2014 Poster: Identifying and attacking the saddle point problem in high-dimensional non-convex optimization »
Yann N Dauphin · Razvan Pascanu · Caglar Gulcehre · Kyunghyun Cho · Surya Ganguli · Yoshua Bengio -
2014 Spotlight: Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics »
Sergey Levine · Pieter Abbeel -
2014 Poster: Generative Adversarial Nets »
Ian Goodfellow · Jean Pouget-Abadie · Mehdi Mirza · Bing Xu · David Warde-Farley · Sherjil Ozair · Aaron Courville · Yoshua Bengio -
2014 Poster: On the Number of Linear Regions of Deep Neural Networks »
Guido F Montufar · Razvan Pascanu · Kyunghyun Cho · Yoshua Bengio -
2014 Demonstration: Neural Machine Translation »
Bart van Merriënboer · Kyunghyun Cho · Dzmitry Bahdanau · Yoshua Bengio -
2014 Oral: How transferable are features in deep neural networks? »
Jason Yosinski · Jeff Clune · Yoshua Bengio · Hod Lipson -
2014 Poster: Factoring Variations in Natural Images with Deep Gaussian Mixture Models »
Aaron van den Oord · Benjamin Schrauwen -
2014 Poster: Iterative Neural Autoregressive Distribution Estimator NADE-k »
Tapani Raiko · Yao Li · Kyunghyun Cho · Yoshua Bengio -
2013 Workshop: Deep Learning »
Yoshua Bengio · Hugo Larochelle · Russ Salakhutdinov · Tomas Mikolov · Matthew D Zeiler · David Mcallester · Nando de Freitas · Josh Tenenbaum · Jian Zhou · Volodymyr Mnih -
2013 Workshop: Output Representation Learning »
Yuhong Guo · Dale Schuurmans · Richard Zemel · Samy Bengio · Yoshua Bengio · Li Deng · Dan Roth · Kilian Q Weinberger · Jason Weston · Kihyuk Sohn · Florent Perronnin · Gabriel Synnaeve · Pablo R Strasser · julien audiffren · Carlo Ciliberto · Dan Goldwasser -
2013 Poster: Variational Policy Search via Trajectory Optimization »
Sergey Levine · Vladlen Koltun -
2013 Demonstration: Deep Content-Based Music Recommendation »
Aaron van den Oord · Sander Dieleman · Benjamin Schrauwen -
2013 Poster: Multi-Prediction Deep Boltzmann Machines »
Ian Goodfellow · Mehdi Mirza · Aaron Courville · Yoshua Bengio -
2013 Poster: Generalized Denoising Auto-Encoders as Generative Models »
Yoshua Bengio · Li Yao · Guillaume Alain · Pascal Vincent -
2013 Poster: Stochastic Ratio Matching of RBMs for Sparse High-Dimensional Inputs »
Yann Dauphin · Yoshua Bengio -
2013 Poster: Deep content-based music recommendation »
Aaron van den Oord · Sander Dieleman · Benjamin Schrauwen -
2012 Workshop: Deep Learning and Unsupervised Feature Learning »
Yoshua Bengio · James Bergstra · Quoc V. Le -
2011 Workshop: Big Learning: Algorithms, Systems, and Tools for Learning at Scale »
Joseph E Gonzalez · Sameer Singh · Graham Taylor · James Bergstra · Alice Zheng · Misha Bilenko · Yucheng Low · Yoshua Bengio · Michael Franklin · Carlos Guestrin · Andrew McCallum · Alexander Smola · Michael Jordan · Sugato Basu -
2011 Workshop: Deep Learning and Unsupervised Feature Learning »
Yoshua Bengio · Adam Coates · Yann LeCun · Nicolas Le Roux · Andrew Y Ng -
2011 Oral: The Manifold Tangent Classifier »
Salah Rifai · Yann N Dauphin · Pascal Vincent · Yoshua Bengio · Xavier Muller -
2011 Poster: Shallow vs. Deep Sum-Product Networks »
Olivier Delalleau · Yoshua Bengio -
2011 Poster: The Manifold Tangent Classifier »
Salah Rifai · Yann N Dauphin · Pascal Vincent · Yoshua Bengio · Xavier Muller -
2011 Poster: Algorithms for Hyper-Parameter Optimization »
James Bergstra · Rémi Bardenet · Yoshua Bengio · Balázs Kégl -
2011 Poster: On Tracking The Partition Function »
Guillaume Desjardins · Aaron Courville · Yoshua Bengio -
2010 Workshop: Deep Learning and Unsupervised Feature Learning »
Honglak Lee · Marc'Aurelio Ranzato · Yoshua Bengio · Geoffrey E Hinton · Yann LeCun · Andrew Y Ng -
2010 Poster: Feature Construction for Inverse Reinforcement Learning »
Sergey Levine · Zoran Popovic · Vladlen Koltun -
2009 Poster: Slow, Decorrelated Features for Pretraining Complex Cell-like Networks »
James Bergstra · Yoshua Bengio -
2009 Poster: An Infinite Factor Model Hierarchy Via a Noisy-Or Mechanism »
Aaron Courville · Douglas Eck · Yoshua Bengio -
2009 Session: Debate on Future Publication Models for the NIPS Community »
Yoshua Bengio -
2007 Poster: Augmented Functional Time Series Representation and Forecasting with Gaussian Processes »
Nicolas Chapados · Yoshua Bengio -
2007 Poster: Learning the 2-D Topology of Images »
Nicolas Le Roux · Yoshua Bengio · Pascal Lamblin · Marc Joliveau · Balázs Kégl -
2007 Spotlight: Augmented Functional Time Series Representation and Forecasting with Gaussian Processes »
Nicolas Chapados · Yoshua Bengio -
2007 Poster: Topmoumoute Online Natural Gradient Algorithm »
Nicolas Le Roux · Pierre-Antoine Manzagol · Yoshua Bengio -
2006 Poster: Greedy Layer-Wise Training of Deep Networks »
Yoshua Bengio · Pascal Lamblin · Dan Popovici · Hugo Larochelle -
2006 Talk: Greedy Layer-Wise Training of Deep Networks »
Yoshua Bengio · Pascal Lamblin · Dan Popovici · Hugo Larochelle