Timezone: »
Poster
Inherent Tradeoffs in Learning Fair Representations
Han Zhao · Geoff Gordon
Thu Dec 12 05:00 PM -- 07:00 PM (PST) @ East Exhibition Hall B + C #111
With the prevalence of machine learning in high-stakes applications, especially the ones regulated by anti-discrimination laws or societal norms, it is crucial to ensure that the predictive models do not propagate any existing bias or discrimination. Due to the ability of deep neural nets to learn rich representations, recent advances in algorithmic fairness have focused on learning fair representations with adversarial techniques to reduce bias in data while preserving utility simultaneously. In this paper, through the lens of information theory, we provide the first result that quantitatively characterizes the tradeoff between demographic parity and the joint utility across different population groups. Specifically, when the base rates differ between groups, we show that any method aiming to learn fair representations admits an information-theoretic lower bound on the joint error across these groups. To complement our negative results, we also prove that if the optimal decision functions across different groups are close, then learning fair representations leads to an alternative notion of fairness, known as the accuracy parity, which states that the error rates are close between groups. Finally, our theoretical findings are also confirmed empirically on real-world datasets.
Author Information
Han Zhao (Carnegie Mellon University)
Geoff Gordon (Microsoft)
More from the Same Authors
-
2021 Poster: Quantifying and Improving Transferability in Domain Generalization »
Guojun Zhang · Han Zhao · Yaoliang Yu · Pascal Poupart -
2019 : Break / Poster Session 1 »
Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · Gaël Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang -
2019 Poster: Learning Neural Networks with Adaptive Regularization »
Han Zhao · Yao-Hung Hubert Tsai · Russ Salakhutdinov · Geoffrey Gordon -
2018 Poster: Adversarial Multiple Source Domain Adaptation »
Han Zhao · Shanghang Zhang · Guanhang Wu · José M. F. Moura · Joao P Costeira · Geoffrey Gordon -
2017 Poster: Linear Time Computation of Moments in Sum-Product Networks »
Han Zhao · Geoffrey Gordon -
2016 Poster: A Unified Approach for Learning the Parameters of Sum-Product Networks »
Han Zhao · Pascal Poupart · Geoffrey Gordon