Timezone: »
Poster
Multilabel reductions: what is my loss optimising?
Aditya Menon · Ankit Singh Rawat · Sashank Reddi · Sanjiv Kumar
Wed Dec 11 05:00 PM -- 07:00 PM (PST) @ East Exhibition Hall B + C #14
Multilabel classification is a challenging problem arising in applications ranging from information retrieval to image tagging. A popular approach to this problem is to employ a reduction to a suitable series of binary or multiclass problems (e.g., computing a softmax based cross-entropy over the relevant labels). While such methods have seen empirical success, less is understood about how well they approximate two fundamental performance measures: precision@$k$ and recall@$k$. In this paper, we study five commonly used reductions, including the one-versus-all reduction, a reduction to multiclass classification, and normalised versions of the same, wherein the contribution of each instance is normalised by the number of relevant labels. Our main result is a formal justification of each reduction: we explicate their underlying risks, and show they are each consistent with respect to either precision or recall. Further, we show that in general no reduction can be optimal for both measures. We empirically validate our results, demonstrating scenarios where normalised reductions yield recall gains over unnormalised counterparts.
Author Information
Aditya Menon (Google)
Ankit Singh Rawat (Google Research)
Sashank Reddi (Google)
Sanjiv Kumar (Google Research)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Spotlight: Multilabel reductions: what is my loss optimising? »
Thu Dec 12th 12:50 -- 12:55 AM Room West Exhibition Hall C + B3
More from the Same Authors
-
2020 Poster: Why are Adaptive Methods Good for Attention Models? »
Jingzhao Zhang · Sai Praneeth Karimireddy · Andreas Veit · Seungyeon Kim · Sashank Reddi · Sanjiv Kumar · Suvrit Sra -
2020 Poster: Multi-Stage Influence Function »
Hongge Chen · Si Si · Yang Li · Ciprian Chelba · Sanjiv Kumar · Duane Boning · Cho-Jui Hsieh -
2020 Poster: O(n) Connections are Expressive Enough: Universal Approximability of Sparse Transformers »
Chulhee Yun · Yin-Wen Chang · Srinadh Bhojanapalli · Ankit Singh Rawat · Sashank Reddi · Sanjiv Kumar -
2020 Poster: Robust large-margin learning in hyperbolic space »
Melanie Weber · Manzil Zaheer · Ankit Singh Rawat · Aditya Menon · Sanjiv Kumar -
2020 Poster: Adversarial robustness via robust low rank representations »
Pranjal Awasthi · Himanshu Jain · Ankit Singh Rawat · Aravindan Vijayaraghavan -
2020 Poster: Learning discrete distributions: user vs item-level privacy »
Yuhan Liu · Ananda Theertha Suresh · Felix Xinnan Yu · Sanjiv Kumar · Michael D Riley -
2019 Poster: Breaking the Glass Ceiling for Embedding-Based Classifiers for Large Output Spaces »
Chuan Guo · Ali Mousavi · Xiang Wu · Daniel Holtmann-Rice · Satyen Kale · Sashank Reddi · Sanjiv Kumar -
2019 Poster: Noise-tolerant fair classification »
Alex Lamy · Ziyuan Zhong · Aditya Menon · Nakul Verma -
2019 Poster: Sampled Softmax with Random Fourier Features »
Ankit Singh Rawat · Jiecao Chen · Felix Xinnan Yu · Ananda Theertha Suresh · Sanjiv Kumar -
2018 Poster: Adaptive Methods for Nonconvex Optimization »
Manzil Zaheer · Sashank Reddi · Devendra Sachan · Satyen Kale · Sanjiv Kumar -
2018 Poster: cpSGD: Communication-efficient and differentially-private distributed SGD »
Naman Agarwal · Ananda Theertha Suresh · Felix Xinnan Yu · Sanjiv Kumar · Brendan McMahan -
2018 Spotlight: cpSGD: Communication-efficient and differentially-private distributed SGD »
Naman Agarwal · Ananda Theertha Suresh · Felix Xinnan Yu · Sanjiv Kumar · Brendan McMahan -
2017 Poster: Multiscale Quantization for Fast Similarity Search »
Xiang Wu · Ruiqi Guo · Ananda Theertha Suresh · Sanjiv Kumar · Daniel Holtmann-Rice · David Simcha · Felix Yu -
2016 Poster: Orthogonal Random Features »
Felix Xinnan Yu · Ananda Theertha Suresh · Krzysztof M Choromanski · Daniel Holtmann-Rice · Sanjiv Kumar -
2016 Oral: Orthogonal Random Features »
Felix Xinnan Yu · Ananda Theertha Suresh · Krzysztof M Choromanski · Daniel Holtmann-Rice · Sanjiv Kumar -
2015 Workshop: The 1st International Workshop "Feature Extraction: Modern Questions and Challenges" »
Dmitry Storcheus · Sanjiv Kumar · Afshin Rostamizadeh -
2015 Poster: Spherical Random Features for Polynomial Kernels »
Jeffrey Pennington · Felix Yu · Sanjiv Kumar -
2015 Spotlight: Spherical Random Features for Polynomial Kernels »
Jeffrey Pennington · Felix Yu · Sanjiv Kumar -
2015 Poster: Structured Transforms for Small-Footprint Deep Learning »
Vikas Sindhwani · Tara Sainath · Sanjiv Kumar -
2015 Spotlight: Structured Transforms for Small-Footprint Deep Learning »
Vikas Sindhwani · Tara Sainath · Sanjiv Kumar -
2014 Session: Oral Session 8 »
Sanjiv Kumar -
2014 Poster: Discrete Graph Hashing »
Wei Liu · Cun Mu · Sanjiv Kumar · Shih-Fu Chang -
2014 Spotlight: Discrete Graph Hashing »
Wei Liu · Cun Mu · Sanjiv Kumar · Shih-Fu Chang -
2012 Poster: Angular Quantization based Binary Codes for Fast Similarity Search »
Yunchao Gong · Sanjiv Kumar · Vishal Verma · Svetlana Lazebnik -
2009 Poster: Ensemble Nystrom Method »
Sanjiv Kumar · Mehryar Mohri · Ameet S Talwalkar