Timezone: »
Unsupervised learning of generative models has seen tremendous progress over recent years, in particular due to generative adversarial networks (GANs), variational autoencoders, and flow-based models. GANs have dramatically improved sample quality, but suffer from two drawbacks: (i) they mode-drop, \ie, do not cover the full support of the train data, and (ii) they do not allow for likelihood evaluations on held-out data. In contrast likelihood-based training encourages models to cover the full support of the train data, but yields poorer samples. These mutual shortcomings can in principle be addressed by training generative latent variable models in a hybrid adversarial-likelihood manner. However, we show that commonly made parametric assumptions create a conflict between them, making successful hybrid models non trivial. As a solution, we propose the use of deep invertible transformations in the latent variable decoder. This approach allows for likelihood computations in image space, is more efficient than fully invertible models, and can take full advantage of adversarial training. We show that our model significantly improves over existing hybrid models: offering GAN-like samples, IS and FID scores that are competitive with fully adversarial models and improved likelihood scores.
Author Information
Thomas Lucas (Inria)
I am a Ph.d student at Inria Grenoble in team THOTH (formerly team LEAR), dealing with computer vision and machine learning.
Konstantin Shmelkov (Huawei)
Karteek Alahari (Inria)
Cordelia Schmid (Inria / Google)
Jakob Verbeek (Facebook)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Spotlight: Adaptive Density Estimation for Generative Models »
Wed. Dec 11th 01:05 -- 01:10 AM Room West Exhibition Hall C + B3
More from the Same Authors
-
2021 : Concept Generalization in Visual Representation Learning »
· Yannis Kalantidis · Diane Larlus · Karteek Alahari -
2022 Poster: Language Conditioned Spatial Relation Reasoning for 3D Object Grounding »
Shizhe Chen · Pierre-Louis Guhur · Makarand Tapaswi · Cordelia Schmid · Ivan Laptev -
2022 Spotlight: Lightning Talks 4B-3 »
Zicheng Zhang · Mancheng Meng · Antoine Guedon · Yue Wu · Wei Mao · Zaiyu Huang · Peihao Chen · Shizhe Chen · yongwei chen · Keqiang Sun · Yi Zhu · chen rui · Hanhui Li · Dongyu Ji · Ziyan Wu · miaomiao Liu · Pascal Monasse · Yu Deng · Shangzhe Wu · Pierre-Louis Guhur · Jiaolong Yang · Kunyang Lin · Makarand Tapaswi · Zhaoyang Huang · Terrence Chen · Jiabao Lei · Jianzhuang Liu · Vincent Lepetit · Zhenyu Xie · Richard I Hartley · Dinggang Shen · Xiaodan Liang · Runhao Zeng · Cordelia Schmid · Michael Kampffmeyer · Mathieu Salzmann · Ning Zhang · Fangyun Wei · Yabin Zhang · Fan Yang · Qifeng Chen · Wei Ke · Quan Wang · Thomas Li · qingling Cai · Kui Jia · Ivan Laptev · Mingkui Tan · Xin Tong · Hongsheng Li · Xiaodan Liang · Chuang Gan -
2022 Spotlight: Language Conditioned Spatial Relation Reasoning for 3D Object Grounding »
Shizhe Chen · Pierre-Louis Guhur · Makarand Tapaswi · Cordelia Schmid · Ivan Laptev -
2022 Poster: Zero-Shot Video Question Answering via Frozen Bidirectional Language Models »
Antoine Yang · Antoine Miech · Josef Sivic · Ivan Laptev · Cordelia Schmid -
2021 Poster: Large-Scale Unsupervised Object Discovery »
Van Huy Vo · Elena Sizikova · Cordelia Schmid · Patrick Pérez · Jean Ponce -
2021 Poster: CCVS: Context-aware Controllable Video Synthesis »
Guillaume Le Moing · Jean Ponce · Cordelia Schmid -
2021 Poster: History Aware Multimodal Transformer for Vision-and-Language Navigation »
Shizhe Chen · Pierre-Louis Guhur · Cordelia Schmid · Ivan Laptev -
2021 Poster: Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond »
Đ.Khuê Lê-Huu · Karteek Alahari -
2021 Poster: Attention Bottlenecks for Multimodal Fusion »
Arsha Nagrani · Shan Yang · Anurag Arnab · Aren Jansen · Cordelia Schmid · Chen Sun -
2021 Poster: Differentiable rendering with perturbed optimizers »
Quentin Le Lidec · Ivan Laptev · Cordelia Schmid · Justin Carpentier -
2018 Poster: Unsupervised Learning of Artistic Styles with Archetypal Style Analysis »
Daan Wynen · Cordelia Schmid · Julien Mairal -
2018 Poster: A flexible model for training action localization with varying levels of supervision »
Guilhem Chéron · Jean-Baptiste Alayrac · Ivan Laptev · Cordelia Schmid -
2016 : Invited Talk - Recent Progress in Spatio-Temporal Action Location »
Cordelia Schmid -
2016 Poster: MoCap-guided Data Augmentation for 3D Pose Estimation in the Wild »
Gregory Rogez · Cordelia Schmid -
2014 Poster: Convolutional Kernel Networks »
Julien Mairal · Piotr Koniusz · Zaid Harchaoui · Cordelia Schmid -
2014 Spotlight: Convolutional Kernel Networks »
Julien Mairal · Piotr Koniusz · Zaid Harchaoui · Cordelia Schmid