Timezone: »
Poster Session 2 Paper Titles & Authors:
Towards deep amortized clustering. Juho Lee, Yoonho Lee, Yee Whye Teh
Chirality Nets: Exploiting Structure in Human Pose Regression. Raymond Yeh, Yuan-Ting Hu, Alexander Schwing
Fair Hierarchical Clustering. Sara Ahmadian, Alessandro Epasto, Marina Knittel, Ravi Kumar, Mohammad Mahdian, Philip Pham
Limitations of Deep Learning on Point Clouds. Christian Bueno, Alan G. Hylton
How Powerful Are Randomly Initialized Pointcloud Set Functions? Aditya Sanghi, Pradeep Kumar Jayaraman
On the Possibility of Rewarding Structure Learning Agents: Mutual Information on Linguistic Random Sets. Ignacio Arroyo-Fernández, Mauricio Carrasco-Ruiz, José Anibal Arias-Aguilar
Modelling Convolution as a Finite Set of Operations Through Transformation Semigroup Theory. Andrew Hryniowski, Alexander Wong
HCA-DBSCAN: HyperCube Accelerated Density Based Spatial Clustering for Applications with Noise. Vinayak Mathur, Jinesh Mehta, Sanjay Singh
Finding densest subgraph in probabilistically evolving graphs. Sara Ahmadian, Shahrzad Haddadan
Representation Learning with Multisets. Vasco Portilheiro
PairNets: Novel Fast Shallow Artificial Neural Networks on Partitioned Subspaces. Luna Zhang
Fair Correlation Clustering. Sara Ahmadian, Alessandro Epasto, Ravi Kumar, Mohammad Mahdian
Learning Maximally Predictive Prototypes in Multiple Instance Learning. Mert Yuksekgonul, Ozgur Emre Sivrikaya, Mustafa Gokce Baydogan
Deep Clustering using MMD Variational Autoencoder and Traditional Clustering Algorithms. Jhosimar Arias
Hypergraph Partitioning using Tensor Eigenvalue Decomposition. Deepak Maurya, Balaraman Ravindran, Shankar Narasimhan
Information Geometric Set Embeddings: From Sets to Distributions. Ke Sun, Frank Nielsen
Document Representations using Fine-Grained Topics. Justin Payan, Andrew McCallum
Author Information
Juho Lee (University of Oxford)
Yoonho Lee (Kakao Corporation)
Yee Whye Teh (University of Oxford, DeepMind)
I am a Professor of Statistical Machine Learning at the Department of Statistics, University of Oxford and a Research Scientist at DeepMind. I am also an Alan Turing Institute Fellow and a European Research Council Consolidator Fellow. I obtained my Ph.D. at the University of Toronto (working with Geoffrey Hinton), and did postdoctoral work at the University of California at Berkeley (with Michael Jordan) and National University of Singapore (as Lee Kuan Yew Postdoctoral Fellow). I was a Lecturer then a Reader at the Gatsby Computational Neuroscience Unit, UCL, and a tutorial fellow at University College Oxford, prior to my current appointment. I am interested in the statistical and computational foundations of intelligence, and works on scalable machine learning, probabilistic models, Bayesian nonparametrics and deep learning. I was programme co-chair of ICML 2017 and AISTATS 2010.
Raymond A. Yeh (University of Illinois at Urbana–Champaign)
Yuan-Ting Hu (University of Illinois Urbana-Champaign)
Alex Schwing (University of Illinois at Urbana-Champaign)
Sara Ahmadian (Google)
Alessandro Epasto (Google)

I am a staff research scientist at Google, New York working in the Google Research Algorithms and Optimization team lead by Vahab Mirrokni. I received a Ph.D in computer science from Sapienza University of Rome, where I was advised by Professor Alessandro Panconesi and supported by the Google Europe Ph.D. Fellowship in Algorithms, 2011. I was also a post-doc at the department of computer science of Brown University in Providence (RI), USA where I was advised by Professor Eli Upfal. My research interests include algorithmic problems in machine learning and data mining, in particular in the areas of clustering, privacy, and large scale graphs analysis.
Marina Knittel (University of Maryland, College Park)
Ravi Kumar (Google)
Mohammad Mahdian (Google Research)
Christian Bueno (University of California, Santa Barbara)
Aditya Sanghi (Autodesk)
Pradeep Kumar Jayaraman (Autodesk)
Ignacio Arroyo-Fernández (Universidad Tecnológica de la Mixteca)
Andrew Hryniowski (DarwinAI \ University of Waterloo)
Vinayak Mathur (EBSCO)
I like solving impactful natural language understanding problems. As a ML Data Scientist at EBSCO, I am working on extracting knowledge from millions of academic publishings and making scientific knowledge more accessible to the world. I gained my chops working with Prof. Andrew McCallum and the IESL lab at the University of Massachusetts Amherst – resolving polysemy and inducing lexical frames. Before moving to UMass I worked on my bachelor dissertation at the Machine and Language Learning Lab at the Indian Institute of Science under the guidance of Dr Partha P Talukdar. When not praying to the optimization Gods, you can find me sailing on the Charles river trying to practise my broken Italian.
Sanjay Singh (Manipal Institute of Technology)
Shahrzad Haddadan (Sapienza University, Rome, Italy)
Vasco Portilheiro (Stanford University)
Luna Zhang (BigBear, Inc.)
Mert Yuksekgonul (Bogazici University)
Jhosimar Arias Figueroa (Independent)
Deepak Maurya (Indian Institute of Technology Madras)
I am currently an MS scholar at CSE dept, IIT Madras. My research is focused on spectral hypergraph theory and system identification.
Balaraman Ravindran (Indian Institute of Technology Madras)
Frank NIELSEN (Ecole Polytechniqe)
Philip Pham (Google)
SWE @Waymo
Justin Payan (UMass Amherst)
Andrew McCallum (UMass Amherst)
Jinesh Mehta (Manipal Institute of Technology K)
I am a CS grad who likes to work on solving daily life problems using ML and AI
Ke SUN (Data61)
More from the Same Authors
-
2021 Spotlight: Per-Pixel Classification is Not All You Need for Semantic Segmentation »
Bowen Cheng · Alex Schwing · Alexander Kirillov -
2021 : CSFCube - A Test Collection of Computer Science Research Articles for Faceted Query by Example »
Sheshera Mysore · Tim O'Gorman · Andrew McCallum · Hamed Zamani -
2021 : COVID-Net Clinical ICU: Enhanced Prediction of ICU Admission for COVID-19 Patients via Explainability and Trust Quantification »
Audrey Chung · Mahmoud Famouri · Andrew Hryniowski · Alexander Wong -
2021 : Deep RePReL--Combining Planning and Deep RL for acting in relational domains »
Harsha Kokel · Arjun Manoharan · Sriraam Natarajan · Balaraman Ravindran · Prasad Tadepalli -
2021 : Interactive Robust Policy Optimization for Multi-Agent Reinforcement Learning »
Videh Nema · Balaraman Ravindran -
2021 : Interactive Robust Policy Optimization for Multi-Agent Reinforcement Learning »
Videh Nema · Balaraman Ravindran -
2021 : Uncertainty Quantification in End-to-End Implicit Neural Representations for Medical Imaging »
Bobby He · Francisca Vasconcelos · Yee Whye Teh -
2021 : Uncertainty Quantification in End-to-End Implicit Neural Representations for Medical Imaging »
Francisca Vasconcelos · Bobby He · Yee Teh -
2021 : Interactive Robust Policy Optimization for Multi-Agent Reinforcement Learning »
Videh Nema · Balaraman Ravindran -
2022 : Pre-training via Denoising for Molecular Property Prediction »
Sheheryar Zaidi · Michael Schaarschmidt · James Martens · Hyunjik Kim · Yee Whye Teh · Alvaro Sanchez Gonzalez · Peter Battaglia · Razvan Pascanu · Jonathan Godwin -
2022 : Guiding Offline Reinforcement Learning Using a Safety Expert »
Richa Verma · Kartik Bharadwaj · Harshad Khadilkar · Balaraman Ravindran -
2022 : Practical Structured Riemannian Optimization with Momentum by using Generalized Normal Coordinates »
Wu Lin · Valentin Duruisseaux · Melvin Leok · Frank Nielsen · Mohammad Emtiyaz Khan · Mark Schmidt -
2022 : Neural Implicit Style-net: synthesizing shapes in a preferred style exploiting self supervision »
Marco Fumero · Hooman Shayani · Aditya Sanghi · Emanuele Rodolà -
2022 : COVID-Net Biochem: An Explainability-driven Framework to Building Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19 Patients from Clinical and Biochemistry Data »
Hossein Aboutalebi · Maya Pavlova · Mohammad Javad Shafiee · Adrian Florea · Andrew Hryniowski · Alexander Wong -
2022 : Scalable and Improved Algorithms for Individually Fair Clustering »
Mohammadhossein Bateni · Vincent Cohen-Addad · Alessandro Epasto · Silvio Lattanzi -
2022 : Differentially Private Graph Learning via Sensitivity-Bounded Personalized PageRank »
Alessandro Epasto · Vahab Mirrokni · Bryan Perozzi · Anton Tsitsulin · Peilin Zhong -
2022 : A Hybrid Classifier with Diverse Features Selected from Feature Sets Extracted by Machine Learning Models for Image Classification »
Luna Zhang -
2022 : Lagrangian Model Based Reinforcement Learning »
Adithya Ramesh · Balaraman Ravindran -
2022 : When Does Re-initialization Work? »
Sheheryar Zaidi · Tudor Berariu · Hyunjik Kim · Jorg Bornschein · Claudia Clopath · Yee Whye Teh · Razvan Pascanu -
2022 Spotlight: Lightning Talks 1A-4 »
Siwei Wang · Jing Liu · Nianqiao Ju · Shiqian Li · Eloïse Berthier · Muhammad Faaiz Taufiq · Arsene Fansi Tchango · Chen Liang · Chulin Xie · Jordan Awan · Jean-Francois Ton · Ziad Kobeissi · Wenguan Wang · Xinwang Liu · Kewen Wu · Rishab Goel · Jiaxu Miao · Suyuan Liu · Julien Martel · Ruobin Gong · Francis Bach · Chi Zhang · Rob Cornish · Sanmi Koyejo · Zhi Wen · Yee Whye Teh · Yi Yang · Jiaqi Jin · Bo Li · Yixin Zhu · Vinayak Rao · Wenxuan Tu · Gaetan Marceau Caron · Arnaud Doucet · Xinzhong Zhu · Joumana Ghosn · En Zhu -
2022 Spotlight: Conformal Off-Policy Prediction in Contextual Bandits »
Muhammad Faaiz Taufiq · Jean-Francois Ton · Rob Cornish · Yee Whye Teh · Arnaud Doucet -
2022 Poster: Differentially Private Graph Learning via Sensitivity-Bounded Personalized PageRank »
Alessandro Epasto · Vahab Mirrokni · Bryan Perozzi · Anton Tsitsulin · Peilin Zhong -
2022 Poster: Tractable Function-Space Variational Inference in Bayesian Neural Networks »
Tim G. J. Rudner · Zonghao Chen · Yee Whye Teh · Yarin Gal -
2022 Poster: Modeling Transitivity and Cyclicity in Directed Graphs via Binary Code Box Embeddings »
Dongxu Zhang · Michael Boratko · Cameron Musco · Andrew McCallum -
2022 Poster: Near-Optimal Private and Scalable $k$-Clustering »
Vincent Cohen-Addad · Alessandro Epasto · Vahab Mirrokni · Shyam Narayanan · Peilin Zhong -
2022 Poster: Conformal Off-Policy Prediction in Contextual Bandits »
Muhammad Faaiz Taufiq · Jean-Francois Ton · Rob Cornish · Yee Whye Teh · Arnaud Doucet -
2022 Poster: Private Isotonic Regression »
Badih Ghazi · Pritish Kamath · Ravi Kumar · Pasin Manurangsi -
2022 Poster: Riemannian Score-Based Generative Modelling »
Valentin De Bortoli · Emile Mathieu · Michael Hutchinson · James Thornton · Yee Whye Teh · Arnaud Doucet -
2022 Poster: CEIP: Combining Explicit and Implicit Priors for Reinforcement Learning with Demonstrations »
Kai Yan · Alex Schwing · Yu-Xiong Wang -
2022 Poster: DigGAN: Discriminator gradIent Gap Regularization for GAN Training with Limited Data »
Tiantian Fang · Ruoyu Sun · Alex Schwing -
2022 Poster: Anonymized Histograms in Intermediate Privacy Models »
Badih Ghazi · Pritish Kamath · Ravi Kumar · Pasin Manurangsi -
2022 Poster: Learnable Polyphase Sampling for Shift Invariant and Equivariant Convolutional Networks »
Renan A. Rojas-Gomez · Teck-Yian Lim · Alex Schwing · Minh Do · Raymond A. Yeh -
2022 Poster: Structured Energy Network As a Loss »
Jay Yoon Lee · Dhruvesh Patel · Purujit Goyal · Wenlong Zhao · Zhiyang Xu · Andrew McCallum -
2022 Poster: On the Importance of Gradient Norm in PAC-Bayesian Bounds »
Itai Gat · Yossi Adi · Alex Schwing · Tamir Hazan -
2021 : Matching options to tasks using Option-Indexed Hierarchical Reinforcement Learning »
Kushal Chauhan · Soumya Chatterjee · Pradeep Shenoy · Balaraman Ravindran -
2021 Poster: Bridging the Imitation Gap by Adaptive Insubordination »
Luca Weihs · Unnat Jain · Iou-Jen Liu · Jordi Salvador · Svetlana Lazebnik · Aniruddha Kembhavi · Alex Schwing -
2021 Poster: On Contrastive Representations of Stochastic Processes »
Emile Mathieu · Adam Foster · Yee Teh -
2021 Poster: Per-Pixel Classification is Not All You Need for Semantic Segmentation »
Bowen Cheng · Alex Schwing · Alexander Kirillov -
2021 Poster: Capacity and Bias of Learned Geometric Embeddings for Directed Graphs »
Michael Boratko · Dongxu Zhang · Nicholas Monath · Luke Vilnis · Kenneth L Clarkson · Andrew McCallum -
2021 Poster: Fast Doubly-Adaptive MCMC to Estimate the Gibbs Partition Function with Weak Mixing Time Bounds »
Shahrzad Haddadan · Yue Zhuang · Cyrus Cousins · Eli Upfal -
2021 Poster: A Contrastive Learning Approach for Training Variational Autoencoder Priors »
Jyoti Aneja · Alex Schwing · Jan Kautz · Arash Vahdat -
2021 Poster: User-Level Differentially Private Learning via Correlated Sampling »
Badih Ghazi · Ravi Kumar · Pasin Manurangsi -
2021 Poster: Group Equivariant Subsampling »
Jin Xu · Hyunjik Kim · Thomas Rainforth · Yee Teh -
2021 Poster: Logarithmic Regret from Sublinear Hints »
Aditya Bhaskara · Ashok Cutkosky · Ravi Kumar · Manish Purohit -
2021 Poster: Deep Learning with Label Differential Privacy »
Badih Ghazi · Noah Golowich · Ravi Kumar · Pasin Manurangsi · Chiyuan Zhang -
2021 Poster: Online Knapsack with Frequency Predictions »
Sungjin Im · Ravi Kumar · Mahshid Montazer Qaem · Manish Purohit -
2021 Poster: Diversity Matters When Learning From Ensembles »
Giung Nam · Jongmin Yoon · Yoonho Lee · Juho Lee -
2021 Poster: Powerpropagation: A sparsity inducing weight reparameterisation »
Jonathan Richard Schwarz · Siddhant Jayakumar · Razvan Pascanu · Peter E Latham · Yee Teh -
2021 Poster: On the Representation Power of Set Pooling Networks »
Christian Bueno · Alan Hylton -
2021 Poster: Contrastive Laplacian Eigenmaps »
Hao Zhu · Ke Sun · Peter Koniusz -
2021 Poster: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations »
Tim G. J. Rudner · Cong Lu · Michael A Osborne · Yarin Gal · Yee Teh -
2021 Poster: On the Variance of the Fisher Information for Deep Learning »
Alexander Soen · Ke Sun -
2021 Poster: Class-agnostic Reconstruction of Dynamic Objects from Videos »
Zhongzheng Ren · Xiaoming Zhao · Alex Schwing -
2021 Poster: Perceptual Score: What Data Modalities Does Your Model Perceive? »
Itai Gat · Idan Schwartz · Alex Schwing -
2021 Poster: Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge Independent Projected Kernels »
Michael Hutchinson · Alexander Terenin · Viacheslav Borovitskiy · So Takao · Yee Teh · Marc Deisenroth -
2021 Poster: BayesIMP: Uncertainty Quantification for Causal Data Fusion »
Siu Lun Chau · Jean-Francois Ton · Javier González · Yee Teh · Dino Sejdinovic -
2021 Poster: Neural Ensemble Search for Uncertainty Estimation and Dataset Shift »
Sheheryar Zaidi · Arber Zela · Thomas Elsken · Chris C Holmes · Frank Hutter · Yee Teh -
2020 : Keynote 1: Ke Sun »
Ke SUN -
2020 : Lightning Talk 1: Insights into Fairness through Trust: Multi-scale Trust Quantification for Financial Deep Learning »
Alexander Wong · Andrew Hryniowski · Xiao Yu Wang -
2020 Poster: Bayesian Deep Ensembles via the Neural Tangent Kernel »
Bobby He · Balaji Lakshminarayanan · Yee Whye Teh -
2020 Poster: Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning »
Zhongzheng Ren · Raymond A. Yeh · Alex Schwing -
2020 Poster: Bootstrapping neural processes »
Juho Lee · Yoonho Lee · Jungtaek Kim · Eunho Yang · Sung Ju Hwang · Yee Whye Teh -
2020 Poster: Towards a Better Global Loss Landscape of GANs »
Ruoyu Sun · Tiantian Fang · Alex Schwing -
2020 Poster: Optimal Approximation - Smoothness Tradeoffs for Soft-Max Functions »
Alessandro Epasto · Mohammad Mahdian · Vahab Mirrokni · Emmanouil Zampetakis -
2020 Spotlight: Optimal Approximation - Smoothness Tradeoffs for Soft-Max Functions »
Alessandro Epasto · Mohammad Mahdian · Vahab Mirrokni · Emmanouil Zampetakis -
2020 Oral: Towards a Better Global Loss Landscape of GANs »
Ruoyu Sun · Tiantian Fang · Alex Schwing -
2020 Poster: Neural Complexity Measures »
Yoonho Lee · Juho Lee · Sung Ju Hwang · Eunho Yang · Seungjin Choi -
2020 Session: Orals & Spotlights Track 22: Vision Applications »
Leonid Sigal · Alex Schwing -
2020 Poster: Sliding Window Algorithms for k-Clustering Problems »
Michele Borassi · Alessandro Epasto · Silvio Lattanzi · Sergei Vassilvitskii · Morteza Zadimoghaddam -
2020 Poster: Fair Hierarchical Clustering »
Sara Ahmadian · Alessandro Epasto · Marina Knittel · Ravi Kumar · Mohammad Mahdian · Benjamin Moseley · Philip Pham · Sergei Vassilvitskii · Yuyan Wang -
2020 Poster: Online Linear Optimization with Many Hints »
Aditya Bhaskara · Ashok Cutkosky · Ravi Kumar · Manish Purohit -
2020 Poster: Removing Bias in Multi-modal Classifiers: Regularization by Maximizing Functional Entropies »
Itai Gat · Idan Schwartz · Alex Schwing · Tamir Hazan -
2020 Poster: How Robust are the Estimated Effects of Nonpharmaceutical Interventions against COVID-19? »
Mrinank Sharma · Sören Mindermann · Jan Brauner · Gavin Leech · Anna Stephenson · Tomáš Gavenčiak · Jan Kulveit · Yee Whye Teh · Leonid Chindelevitch · Yarin Gal -
2020 Spotlight: How Robust are the Estimated Effects of Nonpharmaceutical Interventions against COVID-19? »
Mrinank Sharma · Sören Mindermann · Jan Brauner · Gavin Leech · Anna Stephenson · Tomáš Gavenčiak · Jan Kulveit · Yee Whye Teh · Leonid Chindelevitch · Yarin Gal -
2020 Poster: High-Throughput Synchronous Deep RL »
Iou-Jen Liu · Raymond A. Yeh · Alex Schwing -
2020 Poster: Smoothly Bounding User Contributions in Differential Privacy »
Alessandro Epasto · Mohammad Mahdian · Jieming Mao · Vahab Mirrokni · Lijie Ren -
2020 Poster: Differentially Private Clustering: Tight Approximation Ratios »
Badih Ghazi · Ravi Kumar · Pasin Manurangsi -
2020 Poster: Improving Local Identifiability in Probabilistic Box Embeddings »
Shib Dasgupta · Michael Boratko · Dongxu Zhang · Luke Vilnis · Xiang Li · Andrew McCallum -
2020 Oral: Differentially Private Clustering: Tight Approximation Ratios »
Badih Ghazi · Ravi Kumar · Pasin Manurangsi -
2020 Poster: Big Bird: Transformers for Longer Sequences »
Manzil Zaheer · Guru Guruganesh · Kumar Avinava Dubey · Joshua Ainslie · Chris Alberti · Santiago Ontanon · Philip Pham · Anirudh Ravula · Qifan Wang · Li Yang · Amr Ahmed -
2020 : Learning Multiple Embeddings »
Alessandro Epasto -
2020 : Similarity Ranking »
Alessandro Epasto -
2020 : Application Story: Privacy »
Alessandro Epasto -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 : Contributed Talk - Chirality Nets: Exploiting Structure in Human Pose Regression »
Raymond A. Yeh · Yuan-Ting Hu · Alex Schwing -
2019 : Contributed Talk - Limitations of Deep Learning on Point Clouds »
Christian Bueno -
2019 : Contributed Talk - Fair Hierarchical Clustering »
Sara Ahmadian · Alessandro Epasto · Marina Knittel · Ravi Kumar · Mohammad Mahdian · Philip Pham -
2019 : Contributed Talk - Towards deep amortized clustering »
Juho Lee · Yoonho Lee · Yee Whye Teh -
2019 : Coffee Break & Poster Session 1 »
Yan Zhang · Jonathon Hare · Adam Prugel-Bennett · Po Leung · Patrick Flaherty · Pitchaya Wiratchotisatian · Alessandro Epasto · Silvio Lattanzi · Sergei Vassilvitskii · Morteza Zadimoghaddam · Theja Tulabandhula · Fabian Fuchs · Adam Kosiorek · Ingmar Posner · William Hang · Anna Goldie · Sujith Ravi · Azalia Mirhoseini · Yuwen Xiong · Mengye Ren · Renjie Liao · Raquel Urtasun · Haici Zhang · Michele Borassi · Shengda Luo · Andrew Trapp · Geoffroy Dubourg-Felonneau · Yasmeen Kussad · Christopher Bender · Manzil Zaheer · Junier Oliva · Michał Stypułkowski · Maciej Zieba · Austin Dill · Chun-Liang Li · Songwei Ge · Eunsu Kang · Oiwi Parker Jones · Kelvin Ka Wing Wong · Joshua Payne · Yang Li · Azade Nazi · Erkut Erdem · Aykut Erdem · Kevin O'Connor · Juan J Garcia · Maciej Zamorski · Jan Chorowski · Deeksha Sinha · Harry Clifford · John W Cassidy -
2019 : Opening Remarks »
Manzil Zaheer · Nicholas Monath · Ari Kobren · Junier Oliva · Barnabas Poczos · Ruslan Salakhutdinov · Andrew McCallum -
2019 Workshop: Sets and Partitions »
Nicholas Monath · Manzil Zaheer · Andrew McCallum · Ari Kobren · Junier Oliva · Barnabas Poczos · Ruslan Salakhutdinov -
2019 : Poster Session »
Jonathan Scarlett · Piotr Indyk · Ali Vakilian · Adrian Weller · Partha P Mitra · Benjamin Aubin · Bruno Loureiro · Florent Krzakala · Lenka Zdeborová · Kristina Monakhova · Joshua Yurtsever · Laura Waller · Hendrik Sommerhoff · Michael Moeller · Rushil Anirudh · Shuang Qiu · Xiaohan Wei · Zhuoran Yang · Jayaraman Thiagarajan · Salman Asif · Michael Gillhofer · Johannes Brandstetter · Sepp Hochreiter · Felix Petersen · Dhruv Patel · Assad Oberai · Akshay Kamath · Sushrut Karmalkar · Eric Price · Ali Ahmed · Zahra Kadkhodaie · Sreyas Mohan · Eero Simoncelli · Carlos Fernandez-Granda · Oscar Leong · Wesam Sakla · Rebecca Willett · Stephan Hoyer · Jascha Sohl-Dickstein · Sam Greydanus · Gauri Jagatap · Chinmay Hegde · Michael Kellman · Jonathan Tamir · Nouamane Laanait · Ousmane Dia · Mirco Ravanelli · Jonathan Binas · Negar Rostamzadeh · Shirin Jalali · Tiantian Fang · Alex Schwing · Sébastien Lachapelle · Philippe Brouillard · Tristan Deleu · Simon Lacoste-Julien · Stella Yu · Arya Mazumdar · Ankit Singh Rawat · Yue Zhao · Jianshu Chen · Xiaoyang Li · Hubert Ramsauer · Gabrio Rizzuti · Nikolaos Mitsakos · Dingzhou Cao · Thomas Strohmer · Yang Li · Pei Peng · Gregory Ongie -
2019 : Posters »
Colin Graber · Yuan-Ting Hu · Tiantian Fang · Jessica Hamrick · Giorgio Giannone · John Co-Reyes · Boyang Deng · Eric Crawford · Andrea Dittadi · Peter Karkus · Matthew Dirks · Rakshit Trivedi · Sunny Raj · Javier Felip Leon · Harris Chan · Jan Chorowski · Jeff Orchard · Aleksandar Stanić · Adam Kortylewski · Ben Zinberg · Chenghui Zhou · Wei Sun · Vikash Mansinghka · Chun-Liang Li · Marco Cusumano-Towner -
2019 : Andrew McCallum: Learning DAGs and Trees with Box Embeddings and Hyperbolic Embeddings »
Andrew McCallum -
2019 : Poster session »
Sebastian Farquhar · Erik Daxberger · Andreas Look · Matt Benatan · Ruiyi Zhang · Marton Havasi · Fredrik Gustafsson · James A Brofos · Nabeel Seedat · Micha Livne · Ivan Ustyuzhaninov · Adam Cobb · Felix D McGregor · Patrick McClure · Tim R. Davidson · Gaurush Hiranandani · Sanjeev Arora · Masha Itkina · Didrik Nielsen · William Harvey · Matias Valdenegro-Toro · Stefano Peluchetti · Riccardo Moriconi · Tianyu Cui · Vaclav Smidl · Taylan Cemgil · Jack Fitzsimons · He Zhao · · mariana vargas vieyra · Apratim Bhattacharyya · Rahul Sharma · Geoffroy Dubourg-Felonneau · Jonathan Warrell · Slava Voloshynovskiy · Mihaela Rosca · Jiaming Song · Andrew Ross · Homa Fashandi · Ruiqi Gao · Hooshmand Shokri Razaghi · Joshua Chang · Zhenzhong Xiao · Vanessa Boehm · Giorgio Giannone · Ranganath Krishnan · Joe Davison · Arsenii Ashukha · Jeremiah Liu · Sicong (Sheldon) Huang · Evgenii Nikishin · Sunho Park · Nilesh Ahuja · Mahesh Subedar · · Artyom Gadetsky · Jhosimar Arias Figueroa · Tim G. J. Rudner · Waseem Aslam · Adrián Csiszárik · John Moberg · Ali Hebbal · Kathrin Grosse · Pekka Marttinen · Bang An · Hlynur Jónsson · Samuel Kessler · Abhishek Kumar · Mikhail Figurnov · Omesh Tickoo · Steindor Saemundsson · Ari Heljakka · Dániel Varga · Niklas Heim · Simone Rossi · Max Laves · Waseem Gharbieh · Nicholas Roberts · Luis Armando Pérez Rey · Matthew Willetts · Prithvijit Chakrabarty · Sumedh Ghaisas · Carl Shneider · Wray Buntine · Kamil Adamczewski · Xavier Gitiaux · Suwen Lin · Hao Fu · Gunnar Rätsch · Aidan Gomez · Erik Bodin · Dinh Phung · Lennart Svensson · Juliano Tusi Amaral Laganá Pinto · Milad Alizadeh · Jianzhun Du · Kevin Murphy · Beatrix Benkő · Shashaank Vattikuti · Jonathan Gordon · Christopher Kanan · Sontje Ihler · Darin Graham · Michael Teng · Louis Kirsch · Tomas Pevny · Taras Holotyak -
2019 Poster: Chirality Nets for Human Pose Regression »
Raymond A. Yeh · Yuan-Ting Hu · Alex Schwing -
2019 Poster: Graph Structured Prediction Energy Networks »
Colin Graber · Alex Schwing -
2019 Poster: Search-Guided, Lightly-Supervised Training of Structured Prediction Energy Networks »
Amirmohammad Rooshenas · Dongxu Zhang · Gopal Sharma · Andrew McCallum -
2019 Poster: Efficient Rematerialization for Deep Networks »
Ravi Kumar · Manish Purohit · Zoya Svitkina · Erik Vee · Joshua Wang -
2019 Poster: Stacked Capsule Autoencoders »
Adam Kosiorek · Sara Sabour · Yee Whye Teh · Geoffrey E Hinton -
2019 Poster: Contextual Bandits with Cross-Learning »
Santiago Balseiro · Negin Golrezaei · Mohammad Mahdian · Vahab Mirrokni · Jon Schneider -
2019 Poster: Learning Dynamics of Attention: Human Prior for Interpretable Machine Reasoning »
Wonjae Kim · Yoonho Lee -
2019 Poster: Continual Unsupervised Representation Learning »
Dushyant Rao · Francesco Visin · Andrei A Rusu · Razvan Pascanu · Yee Whye Teh · Raia Hadsell -
2019 Poster: Random Tessellation Forests »
Shufei Ge · Shijia Wang · Yee Whye Teh · Liangliang Wang · Lloyd Elliott -
2019 Poster: TAB-VCR: Tags and Attributes based Visual Commonsense Reasoning Baselines »
Jingxiang Lin · Unnat Jain · Alex Schwing -
2019 Poster: Co-Generation with GANs using AIS based HMC »
Tiantian Fang · Alex Schwing -
2019 Poster: Variational Bayesian Optimal Experimental Design »
Adam Foster · Martin Jankowiak · Elias Bingham · Paul Horsfall · Yee Whye Teh · Thomas Rainforth · Noah Goodman -
2019 Spotlight: Variational Bayesian Optimal Experimental Design »
Adam Foster · Martin Jankowiak · Elias Bingham · Paul Horsfall · Yee Whye Teh · Thomas Rainforth · Noah Goodman -
2019 Poster: Augmented Neural ODEs »
Emilien Dupont · Arnaud Doucet · Yee Whye Teh -
2019 Poster: Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders »
Emile Mathieu · Charline Le Lan · Chris Maddison · Ryota Tomioka · Yee Whye Teh -
2018 : Spotlights 2 »
Mausam · Ankit Anand · Parag Singla · Tarik Koc · Tim Klinger · Habibeh Naderi · Sungwon Lyu · Saeed Amizadeh · Kshitij Dwivedi · Songpeng Zu · Wei Feng · Balaraman Ravindran · Edouard Pineau · Abdulkadir Celikkanat · Deepak Venugopal -
2018 : Poster Session I »
Aniruddh Raghu · Daniel Jarrett · Kathleen Lewis · Elias Chaibub Neto · Nicholas Mastronarde · Shazia Akbar · Chun-Hung Chao · Henghui Zhu · Seth Stafford · Luna Zhang · Jen-Tang Lu · Changhee Lee · Adityanarayanan Radhakrishnan · Fabian Falck · Liyue Shen · Daniel Neil · Yusuf Roohani · Aparna Balagopalan · Brett Marinelli · Hagai Rossman · Sven Giesselbach · Jose Javier Gonzalez Ortiz · Edward De Brouwer · Byung-Hoon Kim · Rafid Mahmood · Tzu Ming Hsu · Antonio Ribeiro · Rumi Chunara · Agni Orfanoudaki · Kristen Severson · Mingjie Mai · Sonali Parbhoo · Albert Haque · Viraj Prabhu · Di Jin · Alena Harley · Geoffroy Dubourg-Felonneau · Xiaodan Hu · Maithra Raghu · Jonathan Warrell · Nelson Johansen · Wenyuan Li · Marko Järvenpää · Satya Narayan Shukla · Sarah Tan · Vincent Fortuin · Beau Norgeot · Yi-Te Hsu · Joel H Saltz · Veronica Tozzo · Andrew Miller · Guillaume Ausset · Azin Asgarian · Francesco Paolo Casale · Antoine Neuraz · Bhanu Pratap Singh Rawat · Turgay Ayer · Xinyu Li · Mehul Motani · Nathaniel Braman · Laetitia M Shao · Adrian Dalca · Hyunkwang Lee · Emma Pierson · Sandesh Ghimire · Yuji Kawai · Owen Lahav · Anna Goldenberg · Denny Wu · Pavitra Krishnaswamy · Colin Pawlowski · Arijit Ukil · Yuhui Zhang -
2018 : Introduction of the workshop »
Razvan Pascanu · Yee Teh · Mark Ring · Marc Pickett -
2018 Workshop: Continual Learning »
Razvan Pascanu · Yee Teh · Marc Pickett · Mark Ring -
2018 Workshop: Critiquing and Correcting Trends in Machine Learning »
Thomas Rainforth · Matt Kusner · Benjamin Bloem-Reddy · Brooks Paige · Rich Caruana · Yee Whye Teh -
2018 Poster: Representation Learning of Compositional Data »
Marta Avalos · Richard Nock · Cheng Soon Ong · Julien Rouar · Ke Sun -
2018 Poster: Compact Representation of Uncertainty in Clustering »
Craig Greenberg · Nicholas Monath · Ari Kobren · Patrick Flaherty · Andrew McGregor · Andrew McCallum -
2018 Poster: Faithful Inversion of Generative Models for Effective Amortized Inference »
Stefan Webb · Adam Golinski · Rob Zinkov · Siddharth N · Thomas Rainforth · Yee Whye Teh · Frank Wood -
2018 Poster: Mallows Models for Top-k Lists »
Flavio Chierichetti · Anirban Dasgupta · Shahrzad Haddadan · Ravi Kumar · Silvio Lattanzi -
2018 Poster: Deep Structured Prediction with Nonlinear Output Transformations »
Colin Graber · Ofer Meshi · Alex Schwing -
2018 Poster: Causal Inference via Kernel Deviance Measures »
Jovana Mitrovic · Dino Sejdinovic · Yee Whye Teh -
2018 Spotlight: Causal Inference via Kernel Deviance Measures »
Jovana Mitrovic · Dino Sejdinovic · Yee Whye Teh -
2018 Poster: Uncertainty-Aware Attention for Reliable Interpretation and Prediction »
Jay Heo · Hae Beom Lee · Saehoon Kim · Juho Lee · Kwang Joon Kim · Eunho Yang · Sung Ju Hwang -
2018 Poster: Stochastic Expectation Maximization with Variance Reduction »
Jianfei Chen · Jun Zhu · Yee Whye Teh · Tong Zhang -
2018 Poster: Pipe-SGD: A Decentralized Pipelined SGD Framework for Distributed Deep Net Training »
Youjie Li · Mingchao Yu · Songze Li · Salman Avestimehr · Nam Sung Kim · Alex Schwing -
2018 Poster: Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects »
Adam Kosiorek · Hyunjik Kim · Yee Whye Teh · Ingmar Posner -
2018 Poster: Improving Online Algorithms via ML Predictions »
Manish Purohit · Zoya Svitkina · Ravi Kumar -
2018 Spotlight: Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects »
Adam Kosiorek · Hyunjik Kim · Yee Whye Teh · Ingmar Posner -
2018 Poster: Out of the Box: Reasoning with Graph Convolution Nets for Factual Visual Question Answering »
Medhini Narasimhan · Svetlana Lazebnik · Alex Schwing -
2018 Poster: DropMax: Adaptive Variational Softmax »
Hae Beom Lee · Juho Lee · Saehoon Kim · Eunho Yang · Sung Ju Hwang -
2018 Poster: Modelling sparsity, heterogeneity, reciprocity and community structure in temporal interaction data »
Xenia Miscouridou · Francois Caron · Yee Whye Teh -
2018 Poster: GradiVeQ: Vector Quantization for Bandwidth-Efficient Gradient Aggregation in Distributed CNN Training »
Mingchao Yu · Zhifeng Lin · Krishna Narra · Songze Li · Youjie Li · Nam Sung Kim · Alex Schwing · Murali Annavaram · Salman Avestimehr -
2017 : Poster session »
Xun Zheng · Tim G. J. Rudner · Christopher Tegho · Patrick McClure · Yunhao Tang · ASHWIN D'CRUZ · Juan Camilo Gamboa Higuera · Chandra Sekhar Seelamantula · Jhosimar Arias Figueroa · Andrew Berlin · Maxime Voisin · Alexander Amini · Thang Long Doan · Hengyuan Hu · Aleksandar Botev · Niko Suenderhauf · CHI ZHANG · John Lambert -
2017 : Panel Session »
Neil Lawrence · Finale Doshi-Velez · Zoubin Ghahramani · Yann LeCun · Max Welling · Yee Whye Teh · Ole Winther -
2017 : Invited Talk: "Light Supervision of Structured Prediction Energy Networks" »
Andrew McCallum -
2017 Invited Talk: On Bayesian Deep Learning and Deep Bayesian Learning »
Yee Whye Teh -
2017 Poster: Distral: Robust multitask reinforcement learning »
Yee Teh · Victor Bapst · Wojciech Czarnecki · John Quan · James Kirkpatrick · Raia Hadsell · Nicolas Heess · Razvan Pascanu -
2017 Poster: Fair Clustering Through Fairlets »
Flavio Chierichetti · Ravi Kumar · Silvio Lattanzi · Sergei Vassilvitskii -
2017 Poster: Dualing GANs »
Yujia Li · Alex Schwing · Kuan-Chieh Wang · Richard Zemel -
2017 Spotlight: Fair Clustering Through Fairlets »
Flavio Chierichetti · Ravi Kumar · Silvio Lattanzi · Sergei Vassilvitskii -
2017 Spotlight: Dualing GANs »
Yujia Li · Alex Schwing · Kuan-Chieh Wang · Richard Zemel -
2017 Poster: MaskRNN: Instance Level Video Object Segmentation »
Yuan-Ting Hu · Jia-Bin Huang · Alex Schwing -
2017 Poster: Active Bias: Training More Accurate Neural Networks by Emphasizing High Variance Samples »
Haw-Shiuan Chang · Erik Learned-Miller · Andrew McCallum -
2017 Poster: Interpretable and Globally Optimal Prediction for Textual Grounding using Image Concepts »
Raymond A. Yeh · Jinjun Xiong · Wen-Mei Hwu · Minh Do · Alex Schwing -
2017 Poster: Asynchronous Parallel Coordinate Minimization for MAP Inference »
Ofer Meshi · Alex Schwing -
2017 Poster: Filtering Variational Objectives »
Chris Maddison · John Lawson · George Tucker · Nicolas Heess · Mohammad Norouzi · Andriy Mnih · Arnaud Doucet · Yee Teh -
2017 Oral: Interpretable and Globally Optimal Prediction for Textual Grounding using Image Concepts »
Raymond A. Yeh · Jinjun Xiong · Wen-Mei Hwu · Minh Do · Alex Schwing -
2017 Poster: High-Order Attention Models for Visual Question Answering »
Idan Schwartz · Alex Schwing · Tamir Hazan -
2017 Poster: Diverse and Accurate Image Description Using a Variational Auto-Encoder with an Additive Gaussian Encoding Space »
Liwei Wang · Alex Schwing · Svetlana Lazebnik -
2016 Poster: Gaussian Processes for Survival Analysis »
Tamara Fernandez · Nicolas Rivera · Yee Whye Teh -
2016 Poster: Constraints Based Convex Belief Propagation »
Yaniv Tenzer · Alex Schwing · Kevin Gimpel · Tamir Hazan -
2016 Poster: Learning Deep Parsimonious Representations »
Renjie Liao · Alex Schwing · Richard Zemel · Raquel Urtasun -
2016 Poster: Community Detection on Evolving Graphs »
Stefano Leonardi · Aris Anagnostopoulos · Jakub Łącki · Silvio Lattanzi · Mohammad Mahdian -
2015 Workshop: Scalable Monte Carlo Methods for Bayesian Analysis of Big Data »
Babak Shahbaba · Yee Whye Teh · Max Welling · Arnaud Doucet · Christophe Andrieu · Sebastian J. Vollmer · Pierre Jacob -
2015 : Random Tensor Decompositions for Regression and Collaborative Filtering »
Yee Whye Teh -
2015 Poster: Space-Time Local Embeddings »
Ke SUN · Jun Wang · Alexandros Kalousis · Stephane Marchand-Maillet -
2015 Poster: A hybrid sampler for Poisson-Kingman mixture models »
Maria Lomeli · Stefano Favaro · Yee Whye Teh -
2015 Poster: Smooth and Strong: MAP Inference with Linear Convergence »
Ofer Meshi · Mehrdad Mahdavi · Alex Schwing -
2015 Poster: Expectation Particle Belief Propagation »
Thibaut Lienart · Yee Whye Teh · Arnaud Doucet -
2014 Workshop: 4th Workshop on Automated Knowledge Base Construction (AKBC) »
Sameer Singh · Fabian M Suchanek · Sebastian Riedel · Partha Pratim Talukdar · Kevin Murphy · Christopher Ré · William Cohen · Tom Mitchell · Andrew McCallum · Jason E Weston · Ramanathan Guha · Boyan Onyshkevych · Hoifung Poon · Oren Etzioni · Ari Kobren · Arvind Neelakantan · Peter Clark -
2014 Poster: Distributed Bayesian Posterior Sampling via Moment Sharing »
Minjie Xu · Balaji Lakshminarayanan · Yee Whye Teh · Jun Zhu · Bo Zhang -
2014 Poster: Efficient Inference of Continuous Markov Random Fields with Polynomial Potentials »
Shenlong Wang · Alex Schwing · Raquel Urtasun -
2014 Poster: Message Passing Inference for Large Scale Graphical Models with High Order Potentials »
Jian Zhang · Alex Schwing · Raquel Urtasun -
2014 Poster: Asynchronous Anytime Sequential Monte Carlo »
Brooks Paige · Frank Wood · Arnaud Doucet · Yee Whye Teh -
2014 Oral: Asynchronous Anytime Sequential Monte Carlo »
Brooks Paige · Frank Wood · Arnaud Doucet · Yee Whye Teh -
2014 Poster: An Autoencoder Approach to Learning Bilingual Word Representations »
Sarath Chandar · Stanislas Lauly · Hugo Larochelle · Mitesh Khapra · Balaraman Ravindran · Vikas C Raykar · Amrita Saha -
2014 Poster: Mondrian Forests: Efficient Online Random Forests »
Balaji Lakshminarayanan · Daniel Roy · Yee Whye Teh -
2013 Poster: Learning with Invariance via Linear Functionals on Reproducing Kernel Hilbert Space »
Xinhua Zhang · Wee Sun Lee · Yee Whye Teh -
2013 Spotlight: Learning with Invariance via Linear Functionals on Reproducing Kernel Hilbert Space »
Xinhua Zhang · Wee Sun Lee · Yee Whye Teh -
2013 Poster: Bayesian Hierarchical Community Discovery »
Charles Blundell · Yee Whye Teh -
2013 Poster: Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex »
Sam Patterson · Yee Whye Teh -
2013 Spotlight: Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex »
Sam Patterson · Yee Whye Teh -
2013 Poster: Latent Structured Active Learning »
Wenjie Luo · Alex Schwing · Raquel Urtasun -
2012 Poster: Searching for objects driven by context »
Bogdan Alexe · Nicolas Heess · Yee Whye Teh · Vittorio Ferrari -
2012 Poster: Learning Label Trees for Probabilistic Modelling of Implicit Feedback »
Andriy Mnih · Yee Whye Teh -
2012 Poster: MCMC for continuous-time discrete-state systems »
Vinayak Rao · Yee Whye Teh -
2012 Poster: Bayesian nonparametric models for ranked data »
Francois Caron · Yee Whye Teh -
2012 Poster: Globally Convergent Dual MAP LP Relaxation Solvers using Fenchel-Young Margins »
Alex Schwing · Tamir Hazan · Marc Pollefeys · Raquel Urtasun -
2012 Spotlight: Searching for objects driven by context »
Bogdan Alexe · Nicolas Heess · Yee Whye Teh · Vittorio Ferrari -
2012 Poster: MAP Inference in Chains using Column Generation »
David Belanger · Alexandre T Passos · Sebastian Riedel · Andrew McCallum -
2012 Poster: Scalable imputation of genetic data with a discrete fragmentation-coagulation process »
Lloyd T Elliott · Yee Whye Teh -
2011 Workshop: Big Learning: Algorithms, Systems, and Tools for Learning at Scale »
Joseph E Gonzalez · Sameer Singh · Graham Taylor · James Bergstra · Alice Zheng · Misha Bilenko · Yucheng Low · Yoshua Bengio · Michael Franklin · Carlos Guestrin · Andrew McCallum · Alexander Smola · Michael Jordan · Sugato Basu -
2011 Poster: Query-Aware MCMC »
Michael Wick · Andrew McCallum -
2011 Poster: Modelling Genetic Variations using Fragmentation-Coagulation Processes »
Yee Whye Teh · Charles Blundell · Lloyd T Elliott -
2011 Oral: Modelling Genetic Variations using Fragmentation-Coagulation Processes »
Yee Whye Teh · Charles Blundell · Lloyd T Elliott -
2011 Poster: Gaussian process modulated renewal processes »
Vinayak Rao · Yee Whye Teh -
2011 Tutorial: Modern Bayesian Nonparametrics »
Peter Orbanz · Yee Whye Teh -
2010 Poster: Improvements to the Sequence Memoizer »
Jan Gasthaus · Yee Whye Teh -
2009 Workshop: Nonparametric Bayes »
Dilan Gorur · Francois Caron · Yee Whye Teh · David B Dunson · Zoubin Ghahramani · Michael Jordan -
2009 Workshop: Grammar Induction, Representation of Language and Language Learning »
Alex Clark · Dorota Glowacka · John Shawe-Taylor · Yee Whye Teh · Chris J Watkins -
2009 Poster: FACTORIE: Probabilistic Programming via Imperatively Defined Factor Graphs »
Andrew McCallum · Karl Schultz · Sameer Singh -
2009 Poster: Indian Buffet Processes with Power-law Behavior »
Yee Whye Teh · Dilan Gorur -
2009 Poster: Training Factor Graphs with Reinforcement Learning for Efficient MAP Inference »
Michael Wick · Khashayar Rohanimanesh · Sameer Singh · Andrew McCallum -
2009 Spotlight: Training Factor Graphs with Reinforcement Learning for Efficient MAP Inference »
Michael Wick · Khashayar Rohanimanesh · Sameer Singh · Andrew McCallum -
2009 Spotlight: Indian Buffet Processes with Power-law Behavior »
Yee Whye Teh · Dilan Gorur -
2009 Poster: Spatial Normalized Gamma Processes »
Vinayak Rao · Yee Whye Teh -
2009 Poster: Rethinking LDA: Why Priors Matter »
Hanna Wallach · David Mimno · Andrew McCallum -
2009 Spotlight: Rethinking LDA: Why Priors Matter »
Hanna Wallach · David Mimno · Andrew McCallum -
2009 Spotlight: Spatial Normalized Gamma Processes »
Vinayak Rao · Yee Whye Teh -
2008 Oral: The Mondrian Process »
Daniel Roy · Yee Whye Teh -
2008 Poster: The Infinite Factorial Hidden Markov Model »
Jurgen Van Gael · Yee Whye Teh · Zoubin Ghahramani -
2008 Poster: The Mondrian Process »
Daniel Roy · Yee Whye Teh -
2008 Spotlight: The Infinite Factorial Hidden Markov Model »
Jurgen Van Gael · Yee Whye Teh · Zoubin Ghahramani -
2008 Poster: On the Efficient Minimization of Classification Calibrated Surrogates »
Richard Nock · Frank NIELSEN -
2008 Poster: A mixture model for the evolution of gene expression in non-homogeneous datasets »
Gerald Quon · Yee Whye Teh · Esther Chan · Michael Brudno · Tim Hughes · Quaid Morris -
2008 Poster: Dependent Dirichlet Process Spike Sorting »
Jan Gasthaus · Frank Wood · Dilan Gorur · Yee Whye Teh -
2008 Spotlight: On the Efficient Minimization of Classification Calibrated Surrogates »
Richard Nock · Frank NIELSEN -
2008 Poster: An Efficient Sequential Monte Carlo Algorithm for Coalescent Clustering »
Dilan Gorur · Yee Whye Teh -
2007 Poster: Bayesian Agglomerative Clustering with Coalescents »
Yee Whye Teh · Hal Daumé III · Daniel Roy -
2007 Poster: Cooled and Relaxed Survey Propagation for MRFs »
Hai Leong Chieu · Wee Sun Lee · Yee Whye Teh -
2007 Session: Session 5: Probabilistic Representations and Learning »
Yee Whye Teh -
2007 Spotlight: Cooled and Relaxed Survey Propagation for MRFs »
Hai Leong Chieu · Wee Sun Lee · Yee Whye Teh -
2007 Oral: Bayesian Agglomerative Clustering with Coalescents »
Yee Whye Teh · Hal Daumé III · Daniel Roy -
2007 Spotlight: Collapsed Variational Inference for HDP »
Yee Whye Teh · Kenichi Kurihara · Max Welling -
2007 Poster: Collapsed Variational Inference for HDP »
Yee Whye Teh · Kenichi Kurihara · Max Welling -
2006 Poster: A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation »
Yee Whye Teh · David Newman · Max Welling