Timezone: »
Author Information
Ethan Harris (University of Southampton)
Tom White (University of Wellington School of Design)
Tom is a New Zealand based artist investigating machine perception. His current work focuses on creating physical artworks that highlight how machines “see” and thus how they think, suggesting that these systems are capable of abstraction and conceptual thinking. He has exhibited computer based artwork internationally over the past 25 years with themes of artificial intelligence, interactivity, and computational creativity. He is currently a lecturer and researcher at University of Wellington School of Design where he teaches students the creative potential of computer programming and artificial intelligence.
Oh Hyeon Choung (École Polytechnique Fédérale de Lausanne (EPFL))
Takashi Shinozaki (NICT CiNet)
Dipan Pal (Carnegie Mellon University)
Katherine L. Hermann (Stanford University)
Judy Borowski (University of Tuebingen)
Camilo Fosco (Massachusetts Institute of Technology)
Chaz Firestone (Johns Hopkins University)
Vijay Veerabadran (University of California, San Diego)
Ph.D. candidate in Cognitive Science with an interest in biological and artificial intelligence (particularly interested in vision). I work on developing recurrent neural networks for efficient learning of long-range spatial dependencies and on quantifying behavioral similarity between human and machine vision.
Benjamin Lahner (MIT)
I investigate human audition and vision using fMRI and MEG to better understand how humans make sense of their world. I then look for ways to apply our understanding of human perception to develop novel AI solutions. I am a graduate student at MIT under the direction of Aude Oliva.
Chaitanya Ryali (UC San Diego)
Fenil Doshi (Harvard University)
Pulkit Singh (Princeton University)
I am a senior in the Computer Science department at Princeton University, interested in machine learning, computational cognitive science, and AI. I'm looking for full time roles post-graduation in data science and ML.
Sharon Zhou (Stanford University)
Michel Besserve (MPI for Intelligent Systems)
Michael Chang (University of California, Berkeley)
Ph.D. student at Berkeley AI Research, U.C. Berkeley B.S. in Computer Science from MIT Former research intern under Juergen Schmidhuber, Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA) Former undergraduate researcher under Joshua Tenenbaum and Antonio Torralba, MIT
Anelise Newman (Massachusetts Institute of Technology)
Mahesan Niranjan (University of Southampton)
Jonathon Hare (University of Southampton)
Daniela Mihai (University of Southampton)
Marios Savvides (Carnegie Mellon University)
Simon Kornblith (Google Brain)
Christina M Funke (University of Tuebingen)
Aude Oliva (MIT)
Virginia de Sa (University of California, San Diego)
Dmitry Krotov (IBM Research)
Colin Conwell (Harvard University)
George Alvarez (Harvard University)
Alex Kolchinski (Stanford University)
Shengjia Zhao (Stanford University)
Mitchell Gordon (Stanford University)
Michael Bernstein (Stanford University)
Stefano Ermon (Stanford)
Arash Mehrjou (Max Planck Institute for Intelligent Systems)
I am a PhD student of Machine Learning at Max Planck Institute for Intelligent Systems working at Empirical Inference Group under supervision of Prof. Bernhard Scholkopf.
Bernhard Schölkopf (MPI for Intelligent Systems)
Bernhard Scholkopf received degrees in mathematics (London) and physics (Tubingen), and a doctorate in computer science from the Technical University Berlin. He has researched at AT&T Bell Labs, at GMD FIRST, Berlin, at the Australian National University, Canberra, and at Microsoft Research Cambridge (UK). In 2001, he was appointed scientific member of the Max Planck Society and director at the MPI for Biological Cybernetics; in 2010 he founded the Max Planck Institute for Intelligent Systems. For further information, see www.kyb.tuebingen.mpg.de/~bs.
John Co-Reyes (UC Berkeley)
Michael Janner (UC Berkeley)
Jiajun Wu (MIT)
Jiajun Wu is a fifth-year Ph.D. student at Massachusetts Institute of Technology, advised by Professor Bill Freeman and Professor Josh Tenenbaum. His research interests lie on the intersection of computer vision, machine learning, and computational cognitive science. Before coming to MIT, he received his B.Eng. from Tsinghua University, China, advised by Professor Zhuowen Tu. He has also spent time working at research labs of Microsoft, Facebook, and Baidu.
Josh Tenenbaum (MIT)
Josh Tenenbaum is an Associate Professor of Computational Cognitive Science at MIT in the Department of Brain and Cognitive Sciences and the Computer Science and Artificial Intelligence Laboratory (CSAIL). He received his PhD from MIT in 1999, and was an Assistant Professor at Stanford University from 1999 to 2002. He studies learning and inference in humans and machines, with the twin goals of understanding human intelligence in computational terms and bringing computers closer to human capacities. He focuses on problems of inductive generalization from limited data -- learning concepts and word meanings, inferring causal relations or goals -- and learning abstract knowledge that supports these inductive leaps in the form of probabilistic generative models or 'intuitive theories'. He has also developed several novel machine learning methods inspired by human learning and perception, most notably Isomap, an approach to unsupervised learning of nonlinear manifolds in high-dimensional data. He has been Associate Editor for the journal Cognitive Science, has been active on program committees for the CogSci and NIPS conferences, and has co-organized a number of workshops, tutorials and summer schools in human and machine learning. Several of his papers have received outstanding paper awards or best student paper awards at the IEEE Computer Vision and Pattern Recognition (CVPR), NIPS, and Cognitive Science conferences. He is the recipient of the New Investigator Award from the Society for Mathematical Psychology (2005), the Early Investigator Award from the Society of Experimental Psychologists (2007), and the Distinguished Scientific Award for Early Career Contribution to Psychology (in the area of cognition and human learning) from the American Psychological Association (2008).
Sergey Levine (UC Berkeley)
Yalda Mohsenzadeh (The University of Western Ontario)
Zhenglong Zhou (University of Pennsylvania)
More from the Same Authors
-
2020 : Paper 46: Disagreement-Regularized Imitation of Complex Multi-Agent Interactions »
Jiaming Song · Stefano Ermon -
2021 : ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation »
Chuang Gan · Jeremy Schwartz · Seth Alter · Damian Mrowca · Martin Schrimpf · James Traer · Julian De Freitas · Jonas Kubilius · Abhishek Bhandwaldar · Nick Haber · Megumi Sano · Kuno Kim · Elias Wang · Michael Lingelbach · Aidan Curtis · Kevin Feigelis · Daniel Bear · Dan Gutfreund · David Cox · Antonio Torralba · James J DiCarlo · Josh Tenenbaum · Josh McDermott · Dan Yamins -
2021 : Physion: Evaluating Physical Prediction from Vision in Humans and Machines »
Daniel Bear · Elias Wang · Damian Mrowca · Felix Binder · Hsiao-Yu Tung · Pramod RT · Cameron Holdaway · Sirui Tao · Kevin Smith · Fan-Yun Sun · Fei-Fei Li · Nancy Kanwisher · Josh Tenenbaum · Dan Yamins · Judith Fan -
2021 Spotlight: Learning to Compose Visual Relations »
Nan Liu · Shuang Li · Yilun Du · Josh Tenenbaum · Antonio Torralba -
2021 Spotlight: Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering »
Vincent Sitzmann · Semon Rezchikov · Bill Freeman · Josh Tenenbaum · Fredo Durand -
2021 Spotlight: IQ-Learn: Inverse soft-Q Learning for Imitation »
Divyansh Garg · Shuvam Chakraborty · Chris Cundy · Jiaming Song · Stefano Ermon -
2021 Spotlight: Iterative Teaching by Label Synthesis »
Weiyang Liu · Zhen Liu · Hanchen Wang · Liam Paull · Bernhard Schölkopf · Adrian Weller -
2021 Spotlight: Robust Predictable Control »
Ben Eysenbach · Russ Salakhutdinov · Sergey Levine -
2021 Spotlight: How Well do Feature Visualizations Support Causal Understanding of CNN Activations? »
Roland S. Zimmermann · Judy Borowski · Robert Geirhos · Matthias Bethge · Thomas Wallis · Wieland Brendel -
2021 Spotlight: Offline Reinforcement Learning as One Big Sequence Modeling Problem »
Michael Janner · Qiyang Li · Sergey Levine -
2021 Spotlight: Maximum Likelihood Training of Score-Based Diffusion Models »
Yang Song · Conor Durkan · Iain Murray · Stefano Ermon -
2021 Spotlight: Pragmatic Image Compression for Human-in-the-Loop Decision-Making »
Sid Reddy · Anca Dragan · Sergey Levine -
2021 Spotlight: DiBS: Differentiable Bayesian Structure Learning »
Lars Lorch · Jonas Rothfuss · Bernhard Schölkopf · Andreas Krause -
2021 : STAR: A Benchmark for Situated Reasoning in Real-World Videos »
Bo Wu · Shoubin Yu · Zhenfang Chen · Josh Tenenbaum · Chuang Gan -
2021 : SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning »
Christopher Yeh · Chenlin Meng · Sherrie Wang · Anne Driscoll · Erik Rozi · Patrick Liu · Jihyeon Lee · Marshall Burke · David Lobell · Stefano Ermon -
2021 : Distributionally robust chance constrained programs using maximum mean discrepancy »
Yassine Nemmour · Bernhard Schölkopf · Jia-Jie Zhu -
2021 : AutumnSynth: Synthesis of Reactive Programs with Structured Latent State »
Ria Das · Zenna Tavares · Josh Tenenbaum · Armando Solar-Lezama -
2021 : Bridge Data: Boosting Generalization of Robotic Skills with Cross-Domain Datasets »
Frederik Ebert · Yanlai Yang · Karl Schmeckpeper · Bernadette Bucher · Kostas Daniilidis · Chelsea Finn · Sergey Levine -
2021 : Hybrid Imitative Planning with Geometric and Predictive Costs in Offroad Environments »
Dhruv Shah · Daniel Shin · Nick Rhinehart · Ali Agha · David D Fan · Sergey Levine -
2021 : Spectrally Adaptive Common Spatial Patterns »
Mahta Mousavi · Eric Lybrand · Shuangquan Feng · Shuai Tang · Rayan Saab · Virginia de Sa -
2021 : Extending the WILDS Benchmark for Unsupervised Adaptation »
Shiori Sagawa · Pang Wei Koh · Tony Lee · Irena Gao · Sang Michael Xie · Kendrick Shen · Ananya Kumar · Weihua Hu · Michihiro Yasunaga · Henrik Marklund · Sara Beery · Ian Stavness · Jure Leskovec · Kate Saenko · Tatsunori Hashimoto · Sergey Levine · Chelsea Finn · Percy Liang -
2021 : Test Time Robustification of Deep Models via Adaptation and Augmentation »
Marvin Zhang · Sergey Levine · Chelsea Finn -
2021 : Value Function Spaces: Skill-Centric State Abstractions for Long-Horizon Reasoning »
Dhruv Shah · Ted Xiao · Alexander Toshev · Sergey Levine · brian ichter -
2021 : Data Sharing without Rewards in Multi-Task Offline Reinforcement Learning »
Tianhe Yu · Aviral Kumar · Yevgen Chebotar · Chelsea Finn · Sergey Levine · Karol Hausman -
2021 : Should I Run Offline Reinforcement Learning or Behavioral Cloning? »
Aviral Kumar · Joey Hong · Anikait Singh · Sergey Levine -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 : Offline Reinforcement Learning with In-sample Q-Learning »
Ilya Kostrikov · Ashvin Nair · Sergey Levine -
2021 : C-Planning: An Automatic Curriculum for Learning Goal-Reaching Tasks »
Tianjun Zhang · Ben Eysenbach · Russ Salakhutdinov · Sergey Levine · Joseph Gonzalez -
2021 : The Information Geometry of Unsupervised Reinforcement Learning »
Ben Eysenbach · Russ Salakhutdinov · Sergey Levine -
2021 : Mismatched No More: Joint Model-Policy Optimization for Model-Based RL »
Ben Eysenbach · Alexander Khazatsky · Sergey Levine · Russ Salakhutdinov -
2021 : Offline Meta-Reinforcement Learning with Online Self-Supervision »
Vitchyr Pong · Ashvin Nair · Laura Smith · Catherine Huang · Sergey Levine -
2021 : Hybrid Imitative Planning with Geometric and Predictive Costs in Offroad Environments »
Daniel Shin · Dhruv Shah · Ali Agha · Nicholas Rhinehart · Sergey Levine -
2021 : CoMPS: Continual Meta Policy Search »
Glen Berseth · Zhiwei Zhang · Grace Zhang · Chelsea Finn · Sergey Levine -
2021 : Explainable medical image analysis by leveraging human-interpretable features through mutual information minimization »
Erick M Cobos · Thomas Kuestner · Bernhard Schölkopf · Sergios Gatidis -
2021 : Amortized Bayesian inference of gravitational waves with normalizing flows »
Maximilian Dax · Stephen Green · Jakob Macke · Bernhard Schölkopf -
2021 : Noether Networks: Meta-Learning Useful Conserved Quantities »
Ferran Alet · Dylan Doblar · Allan Zhou · Josh Tenenbaum · Kenji Kawaguchi · Chelsea Finn -
2021 : Optimal design of interventions in complex socio-economic systems »
Michel Besserve -
2021 : DiBS: Differentiable Bayesian Structure Learning »
Lars Lorch · Jonas Rothfuss · Bernhard Schölkopf · Andreas Krause -
2021 : Learning Neural Causal Models with Active Interventions »
Nino Scherrer · Olexa Bilaniuk · Yashas Annadani · Anirudh Goyal · Patrick Schwab · Bernhard Schölkopf · Michael Mozer · Yoshua Bengio · Stefan Bauer · Nan Rosemary Ke -
2021 : On the Robustness of Causal Algorithmic Recourse »
Ricardo Dominguez-Olmedo · Amir Karimi · Bernhard Schölkopf -
2021 : Scalable Variational Approaches for Bayesian Causal Discovery »
Chris Cundy · Aditya Grover · Stefano Ermon -
2021 : Synthesis of Reactive Programs with Structured Latent State »
Ria Das · Zenna Tavares · Armando Solar-Lezama · Josh Tenenbaum -
2021 : Likelihood-free Density Ratio Acquisition Functions are not Equivalent to Expected Improvements »
Jiaming Song · Stefano Ermon -
2021 : Towards Incorporating Rich Social Interactions Into MDPs »
Ravi Tejwani · Yen-Ling Kuo · Tianmin Shu · Bennett Stankovits · Dan Gutfreund · Josh Tenenbaum · Boris Katz · Andrei Barbu -
2021 : Learning to solve complex tasks by growing knowledge culturally across generations »
Michael Tessler · Jason Madeano · Pedro Tsividis · Noah Goodman · Josh Tenenbaum -
2021 : Offline Reinforcement Learning with Implicit Q-Learning »
Ilya Kostrikov · Ashvin Nair · Sergey Levine -
2021 : TRAIL: Near-Optimal Imitation Learning with Suboptimal Data »
Mengjiao (Sherry) Yang · Sergey Levine · Ofir Nachum -
2022 Poster: Learning Physical Dynamics with Subequivariant Graph Neural Networks »
Jiaqi Han · Wenbing Huang · Hengbo Ma · Jiachen Li · Josh Tenenbaum · Chuang Gan -
2022 : Atmospheric retrievals of exoplanets using learned parameterizations of pressure-temperature profiles »
Timothy Gebhard · Daniel Angerhausen · Björn Konrad · Eleonora Alei · Sascha Quanz · Bernhard Schölkopf -
2022 : Addressing out-of-distribution data for flow-based gravitational wave inference »
Maximilian Dax · Stephen Green · Jonas Wildberger · Jonathan Gair · Michael Puerrer · Jakob Macke · Alessandra Buonanno · Bernhard Schölkopf -
2022 : You Only Live Once: Single-Life Reinforcement Learning »
Annie Chen · Archit Sharma · Sergey Levine · Chelsea Finn -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : Causal Discovery for Modular World Models »
Anson Lei · Bernhard Schölkopf · Ingmar Posner -
2022 : Experiences from the MediaEval Predicting Media Memorability Task »
Alba Garcia Seco de Herrera · Mihai Gabriel Constantin · Claire-Helene Demarty · Camilo Fosco · Sebastian Halder · Graham Healy · Bogdan Ionescu · Ana Matran-Fernandez · Alan F Smeaton · Mushfika Sultana -
2022 : Self-recovery of memory via generative replay »
Zhenglong Zhou · Geshi Yeung · Anna Schapiro -
2022 : A Universal Abstraction for Hierarchical Hopfield Networks »
Benjamin Hoover · Duen Horng Chau · Hendrik Strobelt · Dmitry Krotov -
2022 : Flow Annealed Importance Sampling Bootstrap »
Laurence Midgley · Vincent Stimper · Gregor Simm · Bernhard Schölkopf · José Miguel Hernández-Lobato -
2022 : A Causal Framework to Quantify Robustness of Mathematical Reasoning with Language Models »
Alessandro Stolfo · Zhijing Jin · Kumar Shridhar · Bernhard Schölkopf · Mrinmaya Sachan -
2022 : Estimating the mechanisms underlying transient dynamics based on peri-event data »
Kaidi Shao · Nikos K Logothetis · Michel Besserve -
2022 : Evaluating vaccine allocation strategies using simulation-assisted causal modelling »
Armin Kekić · Jonas Dehning · Luigi Gresele · Julius von Kügelgen · Viola Priesemann · Bernhard Schölkopf -
2022 : Offline Q-learning on Diverse Multi-Task Data Both Scales And Generalizes »
Aviral Kumar · Rishabh Agarwal · XINYANG GENG · George Tucker · Sergey Levine -
2022 : Pre-Training for Robots: Leveraging Diverse Multitask Data via Offline Reinforcement Learning »
Aviral Kumar · Anikait Singh · Frederik Ebert · Yanlai Yang · Chelsea Finn · Sergey Levine -
2022 : Offline Reinforcement Learning from Heteroskedastic Data Via Support Constraints »
Anikait Singh · Aviral Kumar · Quan Vuong · Yevgen Chebotar · Sergey Levine -
2022 : Planning with Large Language Models for Code Generation »
Shun Zhang · Zhenfang Chen · Yikang Shen · Mingyu Ding · Josh Tenenbaum · Chuang Gan -
2022 : Is Conditional Generative Modeling all you need for Decision-Making? »
Anurag Ajay · Yilun Du · Abhi Gupta · Josh Tenenbaum · Tommi Jaakkola · Pulkit Agrawal -
2022 : Skill Acquisition by Instruction Augmentation on Offline Datasets »
Ted Xiao · Harris Chan · Pierre Sermanet · Ayzaan Wahid · Anthony Brohan · Karol Hausman · Sergey Levine · Jonathan Tompson -
2022 : LMPriors: Pre-Trained Language Models as Task-Specific Priors »
Kristy Choi · Chris Cundy · Sanjari Srivastava · Stefano Ermon -
2022 : PnP-Nav: Plug-and-Play Policies for Generalizable Visual Navigation Across Robots »
Dhruv Shah · Ajay Sridhar · Arjun Bhorkar · Noriaki Hirose · Sergey Levine -
2022 : A Universal Abstraction for Hierarchical Hopfield Networks »
Benjamin Hoover · Duen Horng Chau · Hendrik Strobelt · Dmitry Krotov -
2022 : Bitrate-Constrained DRO: Beyond Worst Case Robustness To Unknown Group Shifts »
Amrith Setlur · Don Dennis · Benjamin Eysenbach · Aditi Raghunathan · Chelsea Finn · Virginia Smith · Sergey Levine -
2022 : Confidence-Conditioned Value Functions for Offline Reinforcement Learning »
Joey Hong · Aviral Kumar · Sergey Levine -
2022 : Efficient Deep Reinforcement Learning Requires Regulating Statistical Overfitting »
Qiyang Li · Aviral Kumar · Ilya Kostrikov · Sergey Levine -
2022 : Contrastive Example-Based Control »
Kyle Hatch · Sarthak J Shetty · Benjamin Eysenbach · Tianhe Yu · Rafael Rafailov · Russ Salakhutdinov · Sergey Levine · Chelsea Finn -
2022 : Offline Reinforcement Learning for Customizable Visual Navigation »
Dhruv Shah · Arjun Bhorkar · Hrishit Leen · Ilya Kostrikov · Nicholas Rhinehart · Sergey Levine -
2022 : Efficient Planning in a Compact Latent Action Space »
zhengyao Jiang · Tianjun Zhang · Michael Janner · Yueying (Lisa) Li · Tim Rocktäschel · Edward Grefenstette · Yuandong Tian -
2022 : A Connection between One-Step Regularization and Critic Regularization in Reinforcement Learning »
Benjamin Eysenbach · Matthieu Geist · Sergey Levine · Russ Salakhutdinov -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : Homomorphism AutoEncoder --- Learning Group Structured Representations from Observed Transitions »
Hamza Keurti · Hsiao-Ru Pan · Michel Besserve · Benjamin F. Grewe · Bernhard Schölkopf -
2022 : Relaxing the Kolmogorov Structure Function for Realistic Computational Constraints »
Yoonho Lee · Chelsea Finn · Stefano Ermon -
2022 : Regularizing Score-based Models with Score Fokker-Planck Equations »
Chieh-Hsin Lai · Yuhta Takida · Naoki Murata · Toshimitsu Uesaka · Yuki Mitsufuji · Stefano Ermon -
2022 : On Distillation of Guided Diffusion Models »
Chenlin Meng · Ruiqi Gao · Diederik Kingma · Stefano Ermon · Jonathan Ho · Tim Salimans -
2022 : JPEG Artifact Correction using Denoising Diffusion Restoration Models »
Bahjat Kawar · Jiaming Song · Stefano Ermon · Michael Elad -
2022 : But Are You Sure? Quantifying Uncertainty in Model Explanations »
Charles Marx · Youngsuk Park · Hilaf Hasson · Yuyang (Bernie) Wang · Stefano Ermon · Chaitanya Baru -
2022 : Amortized Inference for Causal Structure Learning »
Lars Lorch · Scott Sussex · Jonas Rothfuss · Andreas Krause · Bernhard Schölkopf -
2022 : Fifteen-minute Competition Overview Video »
Nico Gürtler · Georg Martius · Pavel Kolev · Sebastian Blaes · Manuel Wuethrich · Markus Wulfmeier · Cansu Sancaktar · Martin Riedmiller · Arthur Allshire · Bernhard Schölkopf · Annika Buchholz · Stefan Bauer -
2022 : Towards Disentangling the Roles of Vision & Language in Aesthetic Experience with Multimodal DNNs »
Colin Conwell · Christopher Hamblin -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : Human alignment of neural network representations »
Lukas Muttenthaler · Lorenz Linhardt · Jonas Dippel · Robert Vandermeulen · Simon Kornblith -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : Confidence-Conditioned Value Functions for Offline Reinforcement Learning »
Joey Hong · Aviral Kumar · Sergey Levine -
2022 : Efficient Deep Reinforcement Learning Requires Regulating Statistical Overfitting »
Qiyang Li · Aviral Kumar · Ilya Kostrikov · Sergey Levine -
2022 : Pre-Training for Robots: Leveraging Diverse Multitask Data via Offline Reinforcement Learning »
Anikait Singh · Aviral Kumar · Frederik Ebert · Yanlai Yang · Chelsea Finn · Sergey Levine -
2022 : Offline Reinforcement Learning from Heteroskedastic Data Via Support Constraints »
Anikait Singh · Aviral Kumar · Quan Vuong · Yevgen Chebotar · Sergey Levine -
2022 : Adversarial Policies Beat Professional-Level Go AIs »
Tony Wang · Adam Gleave · Nora Belrose · Tom Tseng · Michael Dennis · Yawen Duan · Viktor Pogrebniak · Joseph Miller · Sergey Levine · Stuart J Russell -
2022 : Contrastive Example-Based Control »
Kyle Hatch · Sarthak J Shetty · Benjamin Eysenbach · Tianhe Yu · Rafael Rafailov · Russ Salakhutdinov · Sergey Levine · Chelsea Finn -
2022 : PnP-Nav: Plug-and-Play Policies for Generalizable Visual Navigation Across Robots »
Dhruv Shah · Ajay Sridhar · Arjun Bhorkar · Noriaki Hirose · Sergey Levine -
2022 : Offline Reinforcement Learning for Customizable Visual Navigation »
Dhruv Shah · Arjun Bhorkar · Hrishit Leen · Ilya Kostrikov · Nicholas Rhinehart · Sergey Levine -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : A Connection between One-Step Regularization and Critic Regularization in Reinforcement Learning »
Benjamin Eysenbach · Matthieu Geist · Russ Salakhutdinov · Sergey Levine -
2022 : Simplifying Model-based RL: Learning Representations, Latent-space Models, and Policies with One Objective »
Raj Ghugare · Homanga Bharadhwaj · Benjamin Eysenbach · Sergey Levine · Ruslan Salakhutdinov -
2022 : Adversarial Policies Beat Professional-Level Go AIs »
Tony Wang · Adam Gleave · Nora Belrose · Tom Tseng · Michael Dennis · Yawen Duan · Viktor Pogrebniak · Joseph Miller · Sergey Levine · Stuart Russell -
2022 : A General-Purpose Neural Architecture for Geospatial Systems »
Martin Weiss · Nasim Rahaman · Frederik Träuble · Francesco Locatello · Alexandre Lacoste · Yoshua Bengio · Erran Li Li · Chris Pal · Bernhard Schölkopf -
2022 : PORTAGING (live AI Performance) »
Kory Mathewson · Piotr Mirowski · Hannah Johnston · Tom White · Jason Baldridge -
2022 : Offline Q-learning on Diverse Multi-Task Data Both Scales And Generalizes »
Aviral Kumar · Rishabh Agarwal · XINYANG GENG · George Tucker · Sergey Levine -
2022 : A Universal Abstraction for Hierarchical Hopfield Networks »
Benjamin Hoover · Duen Horng Chau · Hendrik Strobelt · Dmitry Krotov -
2022 Workshop: Workshop on Machine Learning for Creativity and Design »
Tom White · Yingtao Tian · Lia Coleman · Samaneh Azadi -
2022 Spotlight: Learning Physical Dynamics with Subequivariant Graph Neural Networks »
Jiaqi Han · Wenbing Huang · Hengbo Ma · Jiachen Li · Josh Tenenbaum · Chuang Gan -
2022 Spotlight: Lightning Talks 4B-1 »
Alexandra Senderovich · Zhijie Deng · Navid Ansari · Xuefei Ning · Yasmin Salehi · Xiang Huang · Chenyang Wu · Kelsey Allen · Jiaqi Han · Nikita Balagansky · Tatiana Lopez-Guevara · Tianci Li · Zhanhong Ye · Zixuan Zhou · Feng Zhou · Ekaterina Bulatova · Daniil Gavrilov · Wenbing Huang · Dennis Giannacopoulos · Hans-peter Seidel · Anton Obukhov · Kimberly Stachenfeld · Hongsheng Liu · Jun Zhu · Junbo Zhao · Hengbo Ma · Nima Vahidi Ferdowsi · Zongzhang Zhang · Vahid Babaei · Jiachen Li · Alvaro Sanchez Gonzalez · Yang Yu · Shi Ji · Maxim Rakhuba · Tianchen Zhao · Yiping Deng · Peter Battaglia · Josh Tenenbaum · Zidong Wang · Chuang Gan · Changcheng Tang · Jessica Hamrick · Kang Yang · Tobias Pfaff · Yang Li · Shuang Liang · Min Wang · Huazhong Yang · Haotian CHU · Yu Wang · Fan Yu · Bei Hua · Lei Chen · Bin Dong -
2022 Spotlight: Lightning Talks 1A-3 »
Kimia Noorbakhsh · Ronan Perry · Qi Lyu · Jiawei Jiang · Christian Toth · Olivier Jeunen · Xin Liu · Yuan Cheng · Lei Li · Manuel Rodriguez · Julius von Kügelgen · Lars Lorch · Nicolas Donati · Lukas Burkhalter · Xiao Fu · Zhongdao Wang · Songtao Feng · Ciarán Gilligan-Lee · Rishabh Mehrotra · Fangcheng Fu · Jing Yang · Bernhard Schölkopf · Ya-Li Li · Christian Knoll · Maks Ovsjanikov · Andreas Krause · Shengjin Wang · Hong Zhang · Mounia Lalmas · Bolin Ding · Bo Du · Yingbin Liang · Franz Pernkopf · Robert Peharz · Anwar Hithnawi · Julius von Kügelgen · Bo Li · Ce Zhang -
2022 Spotlight: Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis »
Ronan Perry · Julius von Kügelgen · Bernhard Schölkopf -
2022 Spotlight: Embrace the Gap: VAEs Perform Independent Mechanism Analysis »
Patrik Reizinger · Luigi Gresele · Jack Brady · Julius von Kügelgen · Dominik Zietlow · Bernhard Schölkopf · Georg Martius · Wieland Brendel · Michel Besserve -
2022 Competition: Real Robot Challenge III - Learning Dexterous Manipulation from Offline Data in the Real World »
Nico Gürtler · Georg Martius · Sebastian Blaes · Pavel Kolev · Cansu Sancaktar · Stefan Bauer · Manuel Wuethrich · Markus Wulfmeier · Martin Riedmiller · Arthur Allshire · Annika Buchholz · Bernhard Schölkopf -
2022 : Homomorphism AutoEncoder --- Learning Group Structured Representations from Observed Transitions »
Hamza Keurti · Hsiao-Ru Pan · Michel Besserve · Benjamin F. Grewe · Bernhard Schölkopf -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : Tangible Abstractions »
Tom White -
2022 : The Perceptual Primacy of Feeling: Affectless machine vision models explain the majority of variance in visually evoked affect and aesthetics »
Colin Conwell -
2022 : Exploring Biases in Facial Expression Analysis »
Ritik Raina · Miguel Monares · Mingze Xu · Sarah Fabi · Xiaojing Xu · Lehan Li · Will Sumerfield · Jin Gan · Virginia de Sa -
2022 : Panel Discussion »
Cheng Zhang · Mihaela van der Schaar · Ilya Shpitser · Aapo Hyvarinen · Yoshua Bengio · Bernhard Schölkopf -
2022 Poster: ELIGN: Expectation Alignment as a Multi-Agent Intrinsic Reward »
Zixian Ma · Rose Wang · Fei-Fei Li · Michael Bernstein · Ranjay Krishna -
2022 Poster: Exploring the Latent Space of Autoencoders with Interventional Assays »
Felix Leeb · Stefan Bauer · Michel Besserve · Bernhard Schölkopf -
2022 Poster: 3D Concept Grounding on Neural Fields »
Yining Hong · Yilun Du · Chunru Lin · Josh Tenenbaum · Chuang Gan -
2022 Poster: MEMO: Test Time Robustness via Adaptation and Augmentation »
Marvin Zhang · Sergey Levine · Chelsea Finn -
2022 Poster: Patching open-vocabulary models by interpolating weights »
Gabriel Ilharco · Mitchell Wortsman · Samir Yitzhak Gadre · Shuran Song · Hannaneh Hajishirzi · Simon Kornblith · Ali Farhadi · Ludwig Schmidt -
2022 Poster: First Contact: Unsupervised Human-Machine Co-Adaptation via Mutual Information Maximization »
Siddharth Reddy · Sergey Levine · Anca Dragan -
2022 Poster: PDSketch: Integrated Domain Programming, Learning, and Planning »
Jiayuan Mao · Tomás Lozano-Pérez · Josh Tenenbaum · Leslie Kaelbling -
2022 Poster: Efficient Spatially Sparse Inference for Conditional GANs and Diffusion Models »
Muyang Li · Ji Lin · Chenlin Meng · Stefano Ermon · Song Han · Jun-Yan Zhu -
2022 Poster: A Primer for Neural Arithmetic Logic Modules »
Bhumika Mistry · Katayoun Farrahi · Jonathon Hare -
2022 Poster: Amortized Inference for Causal Structure Learning »
Lars Lorch · Scott Sussex · Jonas Rothfuss · Andreas Krause · Bernhard Schölkopf -
2022 Poster: Neural Attentive Circuits »
Martin Weiss · Nasim Rahaman · Francesco Locatello · Chris Pal · Yoshua Bengio · Bernhard Schölkopf · Erran Li Li · Nicolas Ballas -
2022 Poster: Assaying Out-Of-Distribution Generalization in Transfer Learning »
Florian Wenzel · Andrea Dittadi · Peter Gehler · Carl-Johann Simon-Gabriel · Max Horn · Dominik Zietlow · David Kernert · Chris Russell · Thomas Brox · Bernt Schiele · Bernhard Schölkopf · Francesco Locatello -
2022 Poster: Concrete Score Matching: Generalized Score Matching for Discrete Data »
Chenlin Meng · Kristy Choi · Jiaming Song · Stefano Ermon -
2022 Poster: DASCO: Dual-Generator Adversarial Support Constrained Offline Reinforcement Learning »
Quan Vuong · Aviral Kumar · Sergey Levine · Yevgen Chebotar -
2022 Poster: LISA: Learning Interpretable Skill Abstractions from Language »
Divyansh Garg · Skanda Vaidyanath · Kuno Kim · Jiaming Song · Stefano Ermon -
2022 Poster: Direct Advantage Estimation »
Hsiao-Ru Pan · Nico Gürtler · Alexander Neitz · Bernhard Schölkopf -
2022 Poster: Training and Inference on Any-Order Autoregressive Models the Right Way »
Andy Shih · Dorsa Sadigh · Stefano Ermon -
2022 Poster: SatMAE: Pre-training Transformers for Temporal and Multi-Spectral Satellite Imagery »
Yezhen Cong · Samar Khanna · Chenlin Meng · Patrick Liu · Erik Rozi · Yutong He · Marshall Burke · David Lobell · Stefano Ermon -
2022 Poster: Drawing out of Distribution with Neuro-Symbolic Generative Models »
Yichao Liang · Josh Tenenbaum · Tuan Anh Le · Siddharth N -
2022 Poster: Probable Domain Generalization via Quantile Risk Minimization »
Cian Eastwood · Alexander Robey · Shashank Singh · Julius von Kügelgen · Hamed Hassani · George J. Pappas · Bernhard Schölkopf -
2022 Poster: Interventions, Where and How? Experimental Design for Causal Models at Scale »
Panagiotis Tigas · Yashas Annadani · Andrew Jesson · Bernhard Schölkopf · Yarin Gal · Stefan Bauer -
2022 Poster: FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness »
Tri Dao · Dan Fu · Stefano Ermon · Atri Rudra · Christopher Ré -
2022 Poster: Denoising Diffusion Restoration Models »
Bahjat Kawar · Michael Elad · Stefano Ermon · Jiaming Song -
2022 Poster: Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis »
Ronan Perry · Julius von Kügelgen · Bernhard Schölkopf -
2022 Poster: Adversarial Unlearning: Reducing Confidence Along Adversarial Directions »
Amrith Setlur · Benjamin Eysenbach · Virginia Smith · Sergey Levine -
2022 Poster: Mismatched No More: Joint Model-Policy Optimization for Model-Based RL »
Benjamin Eysenbach · Alexander Khazatsky · Sergey Levine · Russ Salakhutdinov -
2022 Poster: Sampling without Replacement Leads to Faster Rates in Finite-Sum Minimax Optimization »
Aniket Das · Bernhard Schölkopf · Michael Muehlebach -
2022 Poster: Generalizing Bayesian Optimization with Decision-theoretic Entropies »
Willie Neiswanger · Lantao Yu · Shengjia Zhao · Chenlin Meng · Stefano Ermon -
2022 Poster: USB: A Unified Semi-supervised Learning Benchmark for Classification »
Yidong Wang · Hao Chen · Yue Fan · Wang SUN · Ran Tao · Wenxin Hou · Renjie Wang · Linyi Yang · Zhi Zhou · Lan-Zhe Guo · Heli Qi · Zhen Wu · Yu-Feng Li · Satoshi Nakamura · Wei Ye · Marios Savvides · Bhiksha Raj · Takahiro Shinozaki · Bernt Schiele · Jindong Wang · Xing Xie · Yue Zhang -
2022 Poster: Unpacking Reward Shaping: Understanding the Benefits of Reward Engineering on Sample Complexity »
Abhishek Gupta · Aldo Pacchiano · Yuexiang Zhai · Sham Kakade · Sergey Levine -
2022 Poster: Learning Neural Acoustic Fields »
Andrew Luo · Yilun Du · Michael Tarr · Josh Tenenbaum · Antonio Torralba · Chuang Gan -
2022 Poster: Transform Once: Efficient Operator Learning in Frequency Domain »
Michael Poli · Stefano Massaroli · Federico Berto · Jinkyoo Park · Tri Dao · Christopher Ré · Stefano Ermon -
2022 Poster: Self-Similarity Priors: Neural Collages as Differentiable Fractal Representations »
Michael Poli · Winnie Xu · Stefano Massaroli · Chenlin Meng · Kuno Kim · Stefano Ermon -
2022 Poster: Distributionally Adaptive Meta Reinforcement Learning »
Anurag Ajay · Abhishek Gupta · Dibya Ghosh · Sergey Levine · Pulkit Agrawal -
2022 Poster: AutoML Two-Sample Test »
Jonas M. Kübler · Vincent Stimper · Simon Buchholz · Krikamol Muandet · Bernhard Schölkopf -
2022 Poster: You Only Live Once: Single-Life Reinforcement Learning »
Annie Chen · Archit Sharma · Sergey Levine · Chelsea Finn -
2022 Poster: Embrace the Gap: VAEs Perform Independent Mechanism Analysis »
Patrik Reizinger · Luigi Gresele · Jack Brady · Julius von Kügelgen · Dominik Zietlow · Bernhard Schölkopf · Georg Martius · Wieland Brendel · Michel Besserve -
2022 Poster: Object Representations as Fixed Points: Training Iterative Refinement Algorithms with Implicit Differentiation »
Michael Chang · Tom Griffiths · Sergey Levine -
2022 Poster: Data-Driven Offline Decision-Making via Invariant Representation Learning »
Han Qi · Yi Su · Aviral Kumar · Sergey Levine -
2022 Poster: Improving Self-Supervised Learning by Characterizing Idealized Representations »
Yann Dubois · Stefano Ermon · Tatsunori Hashimoto · Percy Liang -
2022 Poster: Contrastive Learning as Goal-Conditioned Reinforcement Learning »
Benjamin Eysenbach · Tianjun Zhang · Sergey Levine · Russ Salakhutdinov -
2022 Poster: When to Make Exceptions: Exploring Language Models as Accounts of Human Moral Judgment »
Zhijing Jin · Sydney Levine · Fernando Gonzalez Adauto · Ojasv Kamal · Maarten Sap · Mrinmaya Sachan · Rada Mihalcea · Josh Tenenbaum · Bernhard Schölkopf -
2022 Poster: HandMeThat: Human-Robot Communication in Physical and Social Environments »
Yanming Wan · Jiayuan Mao · Josh Tenenbaum -
2022 Poster: Communicating Natural Programs to Humans and Machines »
Sam Acquaviva · Yewen Pu · Marta Kryven · Theodoros Sechopoulos · Catherine Wong · Gabrielle Ecanow · Maxwell Nye · Michael Tessler · Josh Tenenbaum -
2022 Poster: Function Classes for Identifiable Nonlinear Independent Component Analysis »
Simon Buchholz · Michel Besserve · Bernhard Schölkopf -
2022 Poster: Imitating Past Successes can be Very Suboptimal »
Benjamin Eysenbach · Soumith Udatha · Russ Salakhutdinov · Sergey Levine -
2022 Poster: Exploration via Planning for Information about the Optimal Trajectory »
Viraj Mehta · Ian Char · Joseph Abbate · Rory Conlin · Mark Boyer · Stefano Ermon · Jeff Schneider · Willie Neiswanger -
2021 : Q&A with Afternoon Invited + Keynote Speakers + Closing Remarks »
Andrew Ng · Sharon Zhou -
2021 : Retrospective Panel »
Sergey Levine · Nando de Freitas · Emma Brunskill · Finale Doshi-Velez · Nan Jiang · Rishabh Agarwal -
2021 : Spotlight Talk: Learning to solve complex tasks by growing knowledge culturally across generations »
Noah Goodman · Josh Tenenbaum · Michael Tessler · Jason Madeano -
2021 : Q&A with Morning Invited + Keynote Speakers + Closing Remarks »
Andrew Ng · Sharon Zhou -
2021 : Lightning Talks - Responsibility and Ethics »
Sharon Zhou · Carole-Jean Wu -
2021 : TorchDyn: Implicit Models and Neural Numerical Methods in PyTorch »
Michael Poli · Stefano Massaroli · Atsushi Yamashita · Hajime Asama · Jinkyoo Park · Stefano Ermon -
2021 : Human Computer Interaction and Crowdsourcing for Data Centric AI »
Michael Bernstein -
2021 Workshop: Data Centric AI »
Andrew Ng · Lora Aroyo · Greg Diamos · Cody Coleman · Vijay Janapa Reddi · Joaquin Vanschoren · Carole-Jean Wu · Sharon Zhou · Lynn He -
2021 Workshop: Physical Reasoning and Inductive Biases for the Real World »
Krishna Murthy Jatavallabhula · Rika Antonova · Kevin Smith · Hsiao-Yu Tung · Florian Shkurti · Jeannette Bohg · Josh Tenenbaum -
2021 : Live Q&A Session 1 with Yoshua Bengio, Leyla Isik, Konrad Kording, Bernhard Scholkopf, Amit Sharma, Joshua Vogelstein, Weiwei Yang »
Yoshua Bengio · Leyla Isik · Konrad Kording · Bernhard Schölkopf · Joshua T Vogelstein · Weiwei Yang -
2021 Workshop: Ecological Theory of Reinforcement Learning: How Does Task Design Influence Agent Learning? »
Manfred Díaz · Hiroki Furuta · Elise van der Pol · Lisa Lee · Shixiang (Shane) Gu · Pablo Samuel Castro · Simon Du · Marc Bellemare · Sergey Levine -
2021 : Data-Driven Offline Optimization for Architecting Hardware Accelerators »
Aviral Kumar · Amir Yazdanbakhsh · Milad Hashemi · Kevin Swersky · Sergey Levine -
2021 : Sergey Levine Talk Q&A »
Sergey Levine -
2021 : Cundy, Grover, Ermon - BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery »
Chris Cundy · Aditya Grover · Stefano Ermon -
2021 : Opinion Contributed Talk: Sergey Levine »
Sergey Levine -
2021 : Dominguez Olmedo, Karimi, Schölkopf - On the Adversarial Robustness of Causal Algorithmic Recourse »
Ricardo Dominguez-Olmedo · Amir Karimi · Bernhard Schölkopf -
2021 : Panel Discussion 3 »
Taylor Webb · Hakwan Lau · Bernhard Schölkopf · Jiangying Zhou · Lior Horesh · Francesca Rossi -
2021 : Causal World Models »
Bernhard Schölkopf -
2021 : Bio-inspired learnable divisive normalization for ANNs »
Vijay Veerabadran · Ritik Raina · Virginia de Sa -
2021 : What can 5.17 billion regression fits tell us about artificial models of the human visual system? »
Colin Conwell · Jacob Prince · George Alvarez · Talia Konkle -
2021 : Unsupervised Representation Learning Facilitates Human-like Spatial Reasoning »
Kaushik Lakshminarasimhan · Colin Conwell -
2021 : Offline Meta-Reinforcement Learning with Online Self-Supervision Q&A »
Vitchyr Pong · Ashvin Nair · Laura Smith · Catherine Huang · Sergey Levine -
2021 : Offline Meta-Reinforcement Learning with Online Self-Supervision »
Vitchyr Pong · Ashvin Nair · Laura Smith · Catherine Huang · Sergey Levine -
2021 : Offline Meta-Reinforcement Learning with Online Self-Supervision »
Vitchyr Pong · Ashvin Nair · Laura Smith · Catherine Huang · Sergey Levine -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization Q&A »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 Workshop: Distribution shifts: connecting methods and applications (DistShift) »
Shiori Sagawa · Pang Wei Koh · Fanny Yang · Hongseok Namkoong · Jiashi Feng · Kate Saenko · Percy Liang · Sarah Bird · Sergey Levine -
2021 : On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation »
Binxu Wang · David Mayo · Arturo Deza · Andrei Barbu · Colin Conwell -
2021 : Shared Visual Representations of Drawing for Communication: How do different biases affect human interpretability and intent? »
Daniela Mihai · Jonathon Hare -
2021 : Boxhead: A Dataset for Learning Hierarchical Representations »
Yukun Chen · Andrea Dittadi · Frederik Träuble · Stefan Bauer · Bernhard Schölkopf -
2021 Workshop: Machine Learning for Creativity and Design »
Tom White · Mattie Tesfaldet · Samaneh Azadi · Daphne Ippolito · Lia Coleman · David Ha -
2021 : Zoom Q&A for Contributed talks Session 1+2 »
Jonathan Roth · Michel Besserve -
2021 Workshop: Causal Inference & Machine Learning: Why now? »
Elias Bareinboim · Bernhard Schölkopf · Terrence Sejnowski · Yoshua Bengio · Judea Pearl -
2021 : Contributed talks Session 2 »
Michel Besserve -
2021 Oral: Replacing Rewards with Examples: Example-Based Policy Search via Recursive Classification »
Ben Eysenbach · Sergey Levine · Russ Salakhutdinov -
2021 Poster: Learning to Compose Visual Relations »
Nan Liu · Shuang Li · Yilun Du · Josh Tenenbaum · Antonio Torralba -
2021 Poster: Why Do Better Loss Functions Lead to Less Transferable Features? »
Simon Kornblith · Ting Chen · Honglak Lee · Mohammad Norouzi -
2021 Poster: How Well do Feature Visualizations Support Causal Understanding of CNN Activations? »
Roland S. Zimmermann · Judy Borowski · Robert Geirhos · Matthias Bethge · Thomas Wallis · Wieland Brendel -
2021 Poster: Learning to Draw: Emergent Communication through Sketching »
Daniela Mihai · Jonathon Hare -
2021 Poster: Improving Coherence and Consistency in Neural Sequence Models with Dual-System, Neuro-Symbolic Reasoning »
Maxwell Nye · Michael Tessler · Josh Tenenbaum · Brenden Lake -
2021 Poster: Dynamic Inference with Neural Interpreters »
Nasim Rahaman · Muhammad Waleed Gondal · Shruti Joshi · Peter Gehler · Yoshua Bengio · Francesco Locatello · Bernhard Schölkopf -
2021 Poster: Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language »
Mingyu Ding · Zhenfang Chen · Tao Du · Ping Luo · Josh Tenenbaum · Chuang Gan -
2021 Poster: Learning Signal-Agnostic Manifolds of Neural Fields »
Yilun Du · Katie Collins · Josh Tenenbaum · Vincent Sitzmann -
2021 Poster: Robust Predictable Control »
Ben Eysenbach · Russ Salakhutdinov · Sergey Levine -
2021 Poster: Generalized Shape Metrics on Neural Representations »
Alex H Williams · Erin Kunz · Simon Kornblith · Scott Linderman -
2021 Poster: HyperSPNs: Compact and Expressive Probabilistic Circuits »
Andy Shih · Dorsa Sadigh · Stefano Ermon -
2021 Poster: Meta-learning to Improve Pre-training »
Aniruddh Raghu · Jonathan Lorraine · Simon Kornblith · Matthew McDermott · David Duvenaud -
2021 Poster: Which Mutual-Information Representation Learning Objectives are Sufficient for Control? »
Kate Rakelly · Abhishek Gupta · Carlos Florensa · Sergey Levine -
2021 Poster: Imitation with Neural Density Models »
Kuno Kim · Akshat Jindal · Yang Song · Jiaming Song · Yanan Sui · Stefano Ermon -
2021 Poster: COMBO: Conservative Offline Model-Based Policy Optimization »
Tianhe Yu · Aviral Kumar · Rafael Rafailov · Aravind Rajeswaran · Sergey Levine · Chelsea Finn -
2021 Poster: Reliable Decisions with Threshold Calibration »
Roshni Sahoo · Shengjia Zhao · Alyssa Chen · Stefano Ermon -
2021 Poster: Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering »
Vincent Sitzmann · Semon Rezchikov · Bill Freeman · Josh Tenenbaum · Fredo Durand -
2021 Poster: Outcome-Driven Reinforcement Learning via Variational Inference »
Tim G. J. Rudner · Vitchyr Pong · Rowan McAllister · Yarin Gal · Sergey Levine -
2021 Poster: Grammar-Based Grounded Lexicon Learning »
Jiayuan Mao · Freda Shi · Jiajun Wu · Roger Levy · Josh Tenenbaum -
2021 Poster: Unsupervised Learning of Compositional Energy Concepts »
Yilun Du · Shuang Li · Yash Sharma · Josh Tenenbaum · Igor Mordatch -
2021 Poster: D2C: Diffusion-Decoding Models for Few-Shot Conditional Generation »
Abhishek Sinha · Jiaming Song · Chenlin Meng · Stefano Ermon -
2021 Poster: Causal Influence Detection for Improving Efficiency in Reinforcement Learning »
Maximilian Seitzer · Bernhard Schölkopf · Georg Martius -
2021 Poster: Improving Compositionality of Neural Networks by Decoding Representations to Inputs »
Mike Wu · Noah Goodman · Stefano Ermon -
2021 Poster: Independent mechanism analysis, a new concept? »
Luigi Gresele · Julius von Kügelgen · Vincent Stimper · Bernhard Schölkopf · Michel Besserve -
2021 Poster: A Bayesian-Symbolic Approach to Reasoning and Learning in Intuitive Physics »
Kai Xu · Akash Srivastava · Dan Gutfreund · Felix Sosa · Tomer Ullman · Josh Tenenbaum · Charles Sutton -
2021 Poster: Neural Regression, Representational Similarity, Model Zoology & Neural Taskonomy at Scale in Rodent Visual Cortex »
Colin Conwell · David Mayo · Andrei Barbu · Michael Buice · George Alvarez · Boris Katz -
2021 Poster: Spatial-Temporal Super-Resolution of Satellite Imagery via Conditional Pixel Synthesis »
Yutong He · Dingjie Wang · Nicholas Lai · William Zhang · Chenlin Meng · Marshall Burke · David Lobell · Stefano Ermon -
2021 Poster: Bayesian Adaptation for Covariate Shift »
Aurick Zhou · Sergey Levine -
2021 Poster: Calibrating Predictions to Decisions: A Novel Approach to Multi-Class Calibration »
Shengjia Zhao · Michael Kim · Roshni Sahoo · Tengyu Ma · Stefano Ermon -
2021 Poster: Estimating High Order Gradients of the Data Distribution by Denoising »
Chenlin Meng · Yang Song · Wenzhe Li · Stefano Ermon -
2021 Poster: Offline Reinforcement Learning as One Big Sequence Modeling Problem »
Michael Janner · Qiyang Li · Sergey Levine -
2021 Poster: Maximum Likelihood Training of Score-Based Diffusion Models »
Yang Song · Conor Durkan · Iain Murray · Stefano Ermon -
2021 Poster: Pragmatic Image Compression for Human-in-the-Loop Decision-Making »
Sid Reddy · Anca Dragan · Sergey Levine -
2021 Poster: Replacing Rewards with Examples: Example-Based Policy Search via Recursive Classification »
Ben Eysenbach · Sergey Levine · Russ Salakhutdinov -
2021 Poster: Pseudo-Spherical Contrastive Divergence »
Lantao Yu · Jiaming Song · Yang Song · Stefano Ermon -
2021 : Real Robot Challenge II + Q&A »
Stefan Bauer · Joel Akpo · Manuel Wuethrich · Nan Rosemary Ke · Anirudh Goyal · Thomas Steinbrenner · Felix Widmaier · Annika Buchholz · Bernhard Schölkopf · Dieter Büchler · Ludovic Righetti · Franziska Meier -
2021 Poster: IQ-Learn: Inverse soft-Q Learning for Imitation »
Divyansh Garg · Shuvam Chakraborty · Chris Cundy · Jiaming Song · Stefano Ermon -
2021 Poster: PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning »
Yining Hong · Li Yi · Josh Tenenbaum · Antonio Torralba · Chuang Gan -
2021 Poster: Information is Power: Intrinsic Control via Information Capture »
Nicholas Rhinehart · Jenny Wang · Glen Berseth · John Co-Reyes · Danijar Hafner · Chelsea Finn · Sergey Levine -
2021 Poster: Conservative Data Sharing for Multi-Task Offline Reinforcement Learning »
Tianhe Yu · Aviral Kumar · Yevgen Chebotar · Karol Hausman · Sergey Levine · Chelsea Finn -
2021 Poster: CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation »
Yusuke Tashiro · Jiaming Song · Yang Song · Stefano Ermon -
2021 Poster: Iterative Teaching by Label Synthesis »
Weiyang Liu · Zhen Liu · Hanchen Wang · Liam Paull · Bernhard Schölkopf · Adrian Weller -
2021 Poster: PiRank: Scalable Learning To Rank via Differentiable Sorting »
Robin Swezey · Aditya Grover · Bruno Charron · Stefano Ermon -
2021 Poster: Noether Networks: meta-learning useful conserved quantities »
Ferran Alet · Dylan Doblar · Allan Zhou · Josh Tenenbaum · Kenji Kawaguchi · Chelsea Finn -
2021 Poster: 3DP3: 3D Scene Perception via Probabilistic Programming »
Nishad Gothoskar · Marco Cusumano-Towner · Ben Zinberg · Matin Ghavamizadeh · Falk Pollok · Austin Garrett · Josh Tenenbaum · Dan Gutfreund · Vikash Mansinghka -
2021 Poster: Why Generalization in RL is Difficult: Epistemic POMDPs and Implicit Partial Observability »
Dibya Ghosh · Jad Rahme · Aviral Kumar · Amy Zhang · Ryan Adams · Sergey Levine -
2021 Poster: The Inductive Bias of Quantum Kernels »
Jonas Kübler · Simon Buchholz · Bernhard Schölkopf -
2021 Poster: Do Vision Transformers See Like Convolutional Neural Networks? »
Maithra Raghu · Thomas Unterthiner · Simon Kornblith · Chiyuan Zhang · Alexey Dosovitskiy -
2021 Poster: BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery »
Chris Cundy · Aditya Grover · Stefano Ermon -
2021 Poster: Backward-Compatible Prediction Updates: A Probabilistic Approach »
Frederik Träuble · Julius von Kügelgen · Matthäus Kleindessner · Francesco Locatello · Bernhard Schölkopf · Peter Gehler -
2021 Poster: Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style »
Julius von Kügelgen · Yash Sharma · Luigi Gresele · Wieland Brendel · Bernhard Schölkopf · Michel Besserve · Francesco Locatello -
2021 Poster: Autonomous Reinforcement Learning via Subgoal Curricula »
Archit Sharma · Abhishek Gupta · Sergey Levine · Karol Hausman · Chelsea Finn -
2021 Poster: DiBS: Differentiable Bayesian Structure Learning »
Lars Lorch · Jonas Rothfuss · Bernhard Schölkopf · Andreas Krause -
2021 Poster: Adaptive Risk Minimization: Learning to Adapt to Domain Shift »
Marvin Zhang · Henrik Marklund · Nikita Dhawan · Abhishek Gupta · Sergey Levine · Chelsea Finn -
2021 Poster: Regret Bounds for Gaussian-Process Optimization in Large Domains »
Manuel Wuethrich · Bernhard Schölkopf · Andreas Krause -
2021 : ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation »
Chuang Gan · Jeremy Schwartz · Seth Alter · Damian Mrowca · Martin Schrimpf · James Traer · Julian De Freitas · Jonas Kubilius · Abhishek Bhandwaldar · Nick Haber · Megumi Sano · Kuno Kim · Elias Wang · Michael Lingelbach · Aidan Curtis · Kevin Feigelis · Daniel Bear · Dan Gutfreund · David Cox · Antonio Torralba · James J DiCarlo · Josh Tenenbaum · Josh McDermott · Dan Yamins -
2021 Oral: Learning to Draw: Emergent Communication through Sketching »
Daniela Mihai · Jonathon Hare -
2020 : Design-Bench: Benchmarks for Data-Driven Offline Model-Based Optimization »
Brandon Trabucco · Aviral Kumar · XINYANG GENG · Sergey Levine -
2020 : Conservative Objective Models: A Simple Approach to Effective Model-Based Optimization »
Brandon Trabucco · Aviral Kumar · XINYANG GENG · Sergey Levine -
2020 : Panel Discussion 2 »
Tom White · Jesse Engel · Aaron Hertzmann · Stephanie Dinkins · Holly Grimm -
2020 : Panel »
Emma Brunskill · Nan Jiang · Nando de Freitas · Finale Doshi-Velez · Sergey Levine · John Langford · Lihong Li · George Tucker · Rishabh Agarwal · Aviral Kumar -
2020 : Contributed Talk 3: Algorithmic Recourse: from Counterfactual Explanations to Interventions »
Amir-Hossein Karimi · Bernhard Schölkopf · Isabel Valera -
2020 Workshop: Workshop on Computer Assisted Programming (CAP) »
Augustus Odena · Charles Sutton · Nadia Polikarpova · Josh Tenenbaum · Armando Solar-Lezama · Isil Dillig -
2020 Workshop: Machine Learning for Creativity and Design 4.0 »
Luba Elliott · Sander Dieleman · Adam Roberts · Tom White · Daphne Ippolito · Holly Grimm · Mattie Tesfaldet · Samaneh Azadi -
2020 : Invited Talk: Growing into intelligence the human way: What do we start with, and how do we learn the rest? »
Josh Tenenbaum -
2020 : Contributed Talk: MaxEnt RL and Robust Control »
Benjamin Eysenbach · Sergey Levine -
2020 : Stefano Emron - Generative Modeling via Denoising »
Stefano Ermon -
2020 : Panel Discussion »
Jessica Hamrick · Klaus Greff · Michelle A. Lee · Irina Higgins · Josh Tenenbaum -
2020 Workshop: KR2ML - Knowledge Representation and Reasoning Meets Machine Learning »
Veronika Thost · Kartik Talamadupula · Vivek Srikumar · Chenwei Zhang · Josh Tenenbaum -
2020 Workshop: Object Representations for Learning and Reasoning »
William Agnew · Rim Assouel · Michael Chang · Antonia Creswell · Eliza Kosoy · Aravind Rajeswaran · Sjoerd van Steenkiste -
2020 Workshop: Causal Discovery and Causality-Inspired Machine Learning »
Biwei Huang · Sara Magliacane · Kun Zhang · Danielle Belgrave · Elias Bareinboim · Daniel Malinsky · Thomas Richardson · Christopher Meek · Peter Spirtes · Bernhard Schölkopf -
2020 Workshop: Differentiable computer vision, graphics, and physics in machine learning »
Krishna Murthy Jatavallabhula · Kelsey Allen · Victoria Dean · Johanna Hansen · Shuran Song · Florian Shkurti · Liam Paull · Derek Nowrouzezahrai · Josh Tenenbaum -
2020 Poster: Model Inversion Networks for Model-Based Optimization »
Aviral Kumar · Sergey Levine -
2020 Poster: Improved Techniques for Training Score-Based Generative Models »
Yang Song · Stefano Ermon -
2020 Poster: Probabilistic Circuits for Variational Inference in Discrete Graphical Models »
Andy Shih · Stefano Ermon -
2020 Poster: Efficient Learning of Generative Models via Finite-Difference Score Matching »
Tianyu Pang · Kun Xu · Chongxuan LI · Yang Song · Stefano Ermon · Jun Zhu -
2020 Poster: Online Bayesian Goal Inference for Boundedly Rational Planning Agents »
Tan Zhi-Xuan · Jordyn Mann · Tom Silver · Josh Tenenbaum · Vikash Mansinghka -
2020 Poster: Program Synthesis with Pragmatic Communication »
Yewen Pu · Kevin Ellis · Marta Kryven · Josh Tenenbaum · Armando Solar-Lezama -
2020 Poster: Continual Learning of Control Primitives : Skill Discovery via Reset-Games »
Kelvin Xu · Siddharth Verma · Chelsea Finn · Sergey Levine -
2020 Poster: Learning Compositional Rules via Neural Program Synthesis »
Maxwell Nye · Armando Solar-Lezama · Josh Tenenbaum · Brenden Lake -
2020 Poster: Belief Propagation Neural Networks »
Jonathan Kuck · Shuvam Chakraborty · Hao Tang · Rachel Luo · Jiaming Song · Ashish Sabharwal · Stefano Ermon -
2020 Poster: Learning abstract structure for drawing by efficient motor program induction »
Lucas Tian · Kevin Ellis · Marta Kryven · Josh Tenenbaum -
2020 Oral: Learning abstract structure for drawing by efficient motor program induction »
Lucas Tian · Kevin Ellis · Marta Kryven · Josh Tenenbaum -
2020 Poster: Gradient Surgery for Multi-Task Learning »
Tianhe Yu · Saurabh Kumar · Abhishek Gupta · Sergey Levine · Karol Hausman · Chelsea Finn -
2020 Poster: The Origins and Prevalence of Texture Bias in Convolutional Neural Networks »
Katherine L. Hermann · Ting Chen · Simon Kornblith -
2020 Oral: The Origins and Prevalence of Texture Bias in Convolutional Neural Networks »
Katherine L. Hermann · Ting Chen · Simon Kornblith -
2020 Memorial: In Memory of Olivier Chapelle »
Bernhard Schölkopf · Andre Elisseeff · Olivier Bousquet · Vladimir Vapnik · Jason E Weston -
2020 Poster: Learning Kernel Tests Without Data Splitting »
Jonas Kübler · Wittawat Jitkrittum · Bernhard Schölkopf · Krikamol Muandet -
2020 Poster: HiPPO: Recurrent Memory with Optimal Polynomial Projections »
Albert Gu · Tri Dao · Stefano Ermon · Atri Rudra · Christopher Ré -
2020 Poster: Linear Disentangled Representations and Unsupervised Action Estimation »
Matthew Painter · Adam Prugel-Bennett · Jonathon Hare -
2020 Poster: Algorithmic recourse under imperfect causal knowledge: a probabilistic approach »
Amir-Hossein Karimi · Julius von Kügelgen · Bernhard Schölkopf · Isabel Valera -
2020 Poster: Causal analysis of Covid-19 Spread in Germany »
Atalanti Mastakouri · Bernhard Schölkopf -
2020 Poster: Big Self-Supervised Models are Strong Semi-Supervised Learners »
Ting Chen · Simon Kornblith · Kevin Swersky · Mohammad Norouzi · Geoffrey E Hinton -
2020 Spotlight: Algorithmic recourse under imperfect causal knowledge: a probabilistic approach »
Amir-Hossein Karimi · Julius von Kügelgen · Bernhard Schölkopf · Isabel Valera -
2020 Spotlight: HiPPO: Recurrent Memory with Optimal Polynomial Projections »
Albert Gu · Tri Dao · Stefano Ermon · Atri Rudra · Christopher Ré -
2020 Poster: Rewriting History with Inverse RL: Hindsight Inference for Policy Improvement »
Benjamin Eysenbach · XINYANG GENG · Sergey Levine · Russ Salakhutdinov -
2020 Poster: Conservative Q-Learning for Offline Reinforcement Learning »
Aviral Kumar · Aurick Zhou · George Tucker · Sergey Levine -
2020 Poster: Autoregressive Score Matching »
Chenlin Meng · Lantao Yu · Yang Song · Jiaming Song · Stefano Ermon -
2020 Poster: Relative gradient optimization of the Jacobian term in unsupervised deep learning »
Luigi Gresele · Giancarlo Fissore · Adrián Javaloy · Bernhard Schölkopf · Aapo Hyvarinen -
2020 Poster: What shapes feature representations? Exploring datasets, architectures, and training »
Katherine L. Hermann · Andrew Lampinen -
2020 Oral: Rewriting History with Inverse RL: Hindsight Inference for Policy Improvement »
Benjamin Eysenbach · XINYANG GENG · Sergey Levine · Russ Salakhutdinov -
2020 Tutorial: (Track3) Offline Reinforcement Learning: From Algorithm Design to Practical Applications Q&A »
Sergey Levine · Aviral Kumar -
2020 Poster: Gamma-Models: Generative Temporal Difference Learning for Infinite-Horizon Prediction »
Michael Janner · Igor Mordatch · Sergey Levine -
2020 Poster: One Solution is Not All You Need: Few-Shot Extrapolation via Structured MaxEnt RL »
Saurabh Kumar · Aviral Kumar · Sergey Levine · Chelsea Finn -
2020 Poster: Multi-Plane Program Induction with 3D Box Priors »
Yikai Li · Jiayuan Mao · Xiuming Zhang · Bill Freeman · Josh Tenenbaum · Noah Snavely · Jiajun Wu -
2020 Poster: Long-Horizon Visual Planning with Goal-Conditioned Hierarchical Predictors »
Karl Pertsch · Oleh Rybkin · Frederik Ebert · Shenghao Zhou · Dinesh Jayaraman · Chelsea Finn · Sergey Levine -
2020 Poster: Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a Latent Variable Model »
Alex X. Lee · Anusha Nagabandi · Pieter Abbeel · Sergey Levine -
2020 Poster: Diversity can be Transferred: Output Diversification for White- and Black-box Attacks »
Yusuke Tashiro · Yang Song · Stefano Ermon -
2020 Poster: Emergent Complexity and Zero-shot Transfer via Unsupervised Environment Design »
Michael Dennis · Natasha Jaques · Eugene Vinitsky · Alexandre Bayen · Stuart Russell · Andrew Critch · Sergey Levine -
2020 Poster: MOPO: Model-based Offline Policy Optimization »
Tianhe Yu · Garrett Thomas · Lantao Yu · Stefano Ermon · James Zou · Sergey Levine · Chelsea Finn · Tengyu Ma -
2020 Poster: Learning Physical Graph Representations from Visual Scenes »
Daniel Bear · Chaofei Fan · Damian Mrowca · Yunzhu Li · Seth Alter · Aran Nayebi · Jeremy Schwartz · Li Fei-Fei · Jiajun Wu · Josh Tenenbaum · Daniel Yamins -
2020 Poster: DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction »
Aviral Kumar · Abhishek Gupta · Sergey Levine -
2020 Poster: Multi-label Contrastive Predictive Coding »
Jiaming Song · Stefano Ermon -
2020 Spotlight: DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction »
Aviral Kumar · Abhishek Gupta · Sergey Levine -
2020 Oral: Emergent Complexity and Zero-shot Transfer via Unsupervised Environment Design »
Michael Dennis · Natasha Jaques · Eugene Vinitsky · Alexandre Bayen · Stuart Russell · Andrew Critch · Sergey Levine -
2020 Oral: Multi-label Contrastive Predictive Coding »
Jiaming Song · Stefano Ermon -
2020 Oral: Learning Physical Graph Representations from Visual Scenes »
Daniel Bear · Chaofei Fan · Damian Mrowca · Yunzhu Li · Seth Alter · Aran Nayebi · Jeremy Schwartz · Li Fei-Fei · Jiajun Wu · Josh Tenenbaum · Daniel Yamins -
2020 Tutorial: (Track3) Offline Reinforcement Learning: From Algorithm Design to Practical Applications »
Sergey Levine · Aviral Kumar -
2019 : Poster Session »
Ayse Cakmak · Yunkai Zhang · Srijith Prabhakarannair Kusumam · Mohamed Osama Ahmed · Xintao Wu · Jayesh Choudhari · David I Inouye · Thomas Taylor · Michel Besserve · Ali Caner Turkmen · Kazi Islam · Antonio Artés · Amrith Setlur · Zhanghua Fu · Zhen Han · Abir De · Nan Du · Pablo Sanchez-Martin -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 : Poster and Coffee Break 2 »
Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall -
2019 : Poster Presentations »
Rahul Mehta · Andrew Lampinen · Binghong Chen · Sergio Pascual-Diaz · Jordi Grau-Moya · Aldo Faisal · Jonathan Tompson · Yiren Lu · Khimya Khetarpal · Martin Klissarov · Pierre-Luc Bacon · Doina Precup · Thanard Kurutach · Aviv Tamar · Pieter Abbeel · Jinke He · Maximilian Igl · Shimon Whiteson · Wendelin Boehmer · Raphaël Marinier · Olivier Pietquin · Karol Hausman · Sergey Levine · Chelsea Finn · Tianhe Yu · Lisa Lee · Benjamin Eysenbach · Emilio Parisotto · Eric Xing · Ruslan Salakhutdinov · Hongyu Ren · Anima Anandkumar · Deepak Pathak · Christopher Lu · Trevor Darrell · Alexei Efros · Phillip Isola · Feng Liu · Bo Han · Gang Niu · Masashi Sugiyama · Saurabh Kumar · Janith Petangoda · Johan Ferret · James McClelland · Kara Liu · Animesh Garg · Robert Lange -
2019 : Lunch + Poster Session »
Frederik Gerzer · Bill Yang Cai · Pieter-Jan Hoedt · Kelly Kochanski · Soo Kyung Kim · Yunsung Lee · Sunghyun Park · Sharon Zhou · Martin Gauch · Jonathan Wilson · Joyjit Chatterjee · Shamindra Shrotriya · Dimitri Papadimitriou · Christian Schön · Valentina Zantedeschi · Gabriella Baasch · Willem Waegeman · Gautier Cosne · Dara Farrell · Brendan Lucier · Letif Mones · Caleb Robinson · Tafara Chitsiga · Victor Kristof · Hari Prasanna Das · Yimeng Min · Alexandra Puchko · Alexandra Luccioni · Kyle Story · Jason Hickey · Yue Hu · Björn Lütjens · Zhecheng Wang · Renzhi Jing · Genevieve Flaspohler · Jingfan Wang · Saumya Sinha · Qinghu Tang · Armi Tiihonen · Ruben Glatt · Muge Komurcu · Jan Drgona · Juan Gomez-Romero · Ashish Kapoor · Dylan J Fitzpatrick · Alireza Rezvanifar · Adrian Albert · Olya (Olga) Irzak · Kara Lamb · Ankur Mahesh · Kiwan Maeng · Frederik Kratzert · Sorelle Friedler · Niccolo Dalmasso · Alex Robson · Lindiwe Malobola · Lucas Maystre · Yu-wen Lin · Surya Karthik Mukkavili · Brian Hutchinson · Alexandre Lacoste · Yanbing Wang · Zhengcheng Wang · Yinda Zhang · Victoria Preston · Jacob Pettit · Draguna Vrabie · Miguel Molina-Solana · Tonio Buonassisi · Andrew Annex · Tunai P Marques · Catalin Voss · Johannes Rausch · Max Evans -
2019 : Multivariate coupling estimation between continuous signals and point processes »
Michel Besserve -
2019 : Extended Poster Session »
Travis LaCroix · Marie Ossenkopf · Mina Lee · Nicole Fitzgerald · Daniela Mihai · Jonathon Hare · Ali Zaidi · Alexander Cowen-Rivers · Alana Marzoev · Eugene Kharitonov · Luyao Yuan · Tomasz Korbak · Paul Pu Liang · Yi Ren · Roberto Dessì · Peter Potash · Shangmin Guo · Tatsunori Hashimoto · Percy Liang · Julian Zubek · Zipeng Fu · Song-Chun Zhu · Adam Lerer -
2019 : Coffee Break & Poster Session 1 »
Yan Zhang · Jonathon Hare · Adam Prugel-Bennett · Po Leung · Patrick Flaherty · Pitchaya Wiratchotisatian · Alessandro Epasto · Silvio Lattanzi · Sergei Vassilvitskii · Morteza Zadimoghaddam · Theja Tulabandhula · Fabian Fuchs · Adam Kosiorek · Ingmar Posner · William Hang · Anna Goldie · Sujith Ravi · Azalia Mirhoseini · Yuwen Xiong · Mengye Ren · Renjie Liao · Raquel Urtasun · Haici Zhang · Michele Borassi · Shengda Luo · Andrew Trapp · Geoffroy Dubourg-Felonneau · Yasmeen Kussad · Christopher Bender · Manzil Zaheer · Junier Oliva · Michał Stypułkowski · Maciej Zieba · Austin Dill · Chun-Liang Li · Songwei Ge · Eunsu Kang · Oiwi Parker Jones · Kelvin Ka Wing Wong · Joshua Payne · Yang Li · Azade Nazi · Erkut Erdem · Aykut Erdem · Kevin O'Connor · Juan J Garcia · Maciej Zamorski · Jan Chorowski · Deeksha Sinha · Harry Clifford · John W Cassidy -
2019 : Bernhard Schölkopf »
Bernhard Schölkopf -
2019 Workshop: NeurIPS Workshop on Machine Learning for Creativity and Design 3.0 »
Luba Elliott · Sander Dieleman · Adam Roberts · Jesse Engel · Tom White · Rebecca Fiebrink · Parag Mital · Christine McLeavey · Nao Tokui -
2019 : Panel Discussion »
Linda Smith · Josh Tenenbaum · Lisa Anne Hendricks · James McClelland · Timothy Lillicrap · Jesse Thomason · Jason Baldridge · Louis-Philippe Morency -
2019 : Josh Tenenbaum »
Josh Tenenbaum -
2019 : Panel »
Sanja Fidler · Josh Tenenbaum · Tatiana López-Guevara · Danilo Jimenez Rezende · Niloy Mitra -
2019 : Josh Tenenbaum »
Josh Tenenbaum -
2019 : Spotlights 1 »
Michael Chang · Jan Chorowski · Matthew Dirks -
2019 Workshop: Information Theory and Machine Learning »
Shengjia Zhao · Jiaming Song · Yanjun Han · Kristy Choi · Pratyusha Kalluri · Ben Poole · Alex Dimakis · Jiantao Jiao · Tsachy Weissman · Stefano Ermon -
2019 Poster: Write, Execute, Assess: Program Synthesis with a REPL »
Kevin Ellis · Maxwell Nye · Yewen Pu · Felix Sosa · Josh Tenenbaum · Armando Solar-Lezama -
2019 Poster: ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models »
Andrei Barbu · David Mayo · Julian Alverio · William Luo · Christopher Wang · Dan Gutfreund · Josh Tenenbaum · Boris Katz -
2019 Poster: On the Fairness of Disentangled Representations »
Francesco Locatello · Gabriele Abbati · Thomas Rainforth · Stefan Bauer · Bernhard Schölkopf · Olivier Bachem -
2019 Poster: Wasserstein Dependency Measure for Representation Learning »
Sherjil Ozair · Corey Lynch · Yoshua Bengio · Aaron van den Oord · Sergey Levine · Pierre Sermanet -
2019 Poster: On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset »
Muhammad Waleed Gondal · Manuel Wuethrich · Djordje Miladinovic · Francesco Locatello · Martin Breidt · Valentin Volchkov · Joel Akpo · Olivier Bachem · Bernhard Schölkopf · Stefan Bauer -
2019 Poster: Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations »
Kevin Smith · Lingjie Mei · Shunyu Yao · Jiajun Wu · Elizabeth Spelke · Josh Tenenbaum · Tomer Ullman -
2019 Poster: Temporal FiLM: Capturing Long-Range Sequence Dependencies with Feature-Wise Modulations. »
Sawyer Birnbaum · Volodymyr Kuleshov · Zayd Enam · Pang Wei Koh · Stefano Ermon -
2019 Poster: Planning with Goal-Conditioned Policies »
Soroush Nasiriany · Vitchyr Pong · Steven Lin · Sergey Levine -
2019 Poster: Search on the Replay Buffer: Bridging Planning and Reinforcement Learning »
Benjamin Eysenbach · Russ Salakhutdinov · Sergey Levine -
2019 Poster: When does label smoothing help? »
Rafael Müller · Simon Kornblith · Geoffrey E Hinton -
2019 Spotlight: When does label smoothing help? »
Rafael Müller · Simon Kornblith · Geoffrey E Hinton -
2019 Poster: MCP: Learning Composable Hierarchical Control with Multiplicative Compositional Policies »
Xue Bin Peng · Michael Chang · Grace Zhang · Pieter Abbeel · Sergey Levine -
2019 Poster: Visual Concept-Metaconcept Learning »
Chi Han · Jiayuan Mao · Chuang Gan · Josh Tenenbaum · Jiajun Wu -
2019 Poster: MintNet: Building Invertible Neural Networks with Masked Convolutions »
Yang Song · Chenlin Meng · Stefano Ermon -
2019 Poster: Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting »
Aditya Grover · Jiaming Song · Ashish Kapoor · Kenneth Tran · Alekh Agarwal · Eric Horvitz · Stefano Ermon -
2019 Poster: Meta-Inverse Reinforcement Learning with Probabilistic Context Variables »
Lantao Yu · Tianhe Yu · Chelsea Finn · Stefano Ermon -
2019 Poster: Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction »
Aviral Kumar · Justin Fu · George Tucker · Sergey Levine -
2019 Poster: Finding Friend and Foe in Multi-Agent Games »
Jack Serrino · Max Kleiman-Weiner · David Parkes · Josh Tenenbaum -
2019 Poster: Unsupervised Curricula for Visual Meta-Reinforcement Learning »
Allan Jabri · Kyle Hsu · Abhishek Gupta · Benjamin Eysenbach · Sergey Levine · Chelsea Finn -
2019 Spotlight: Finding Friend and Foe in Multi-Agent Games »
Jack Serrino · Max Kleiman-Weiner · David Parkes · Josh Tenenbaum -
2019 Poster: Saccader: Improving Accuracy of Hard Attention Models for Vision »
Gamaleldin Elsayed · Simon Kornblith · Quoc V Le -
2019 Poster: Approximating the Permanent by Sampling from Adaptive Partitions »
Jonathan Kuck · Tri Dao · Hamid Rezatofighi · Ashish Sabharwal · Stefano Ermon -
2019 Poster: Compositional Plan Vectors »
Coline Devin · Daniel Geng · Pieter Abbeel · Trevor Darrell · Sergey Levine -
2019 Poster: Perceiving the arrow of time in autoregressive motion »
Kristof Meding · Dominik Janzing · Bernhard Schölkopf · Felix A. Wichmann -
2019 Spotlight: Unsupervised Curricula for Visual Meta-Reinforcement Learning »
Allan Jabri · Kyle Hsu · Abhishek Gupta · Benjamin Eysenbach · Sergey Levine · Chelsea Finn -
2019 Poster: HYPE: A Benchmark for Human eYe Perceptual Evaluation of Generative Models »
Sharon Zhou · Mitchell Gordon · Ranjay Krishna · Austin Narcomey · Li Fei-Fei · Michael Bernstein -
2019 Poster: Causal Confusion in Imitation Learning »
Pim de Haan · Dinesh Jayaraman · Sergey Levine -
2019 Poster: Generative Modeling by Estimating Gradients of the Data Distribution »
Yang Song · Stefano Ermon -
2019 Poster: Meta-Learning with Implicit Gradients »
Aravind Rajeswaran · Chelsea Finn · Sham Kakade · Sergey Levine -
2019 Poster: Deep Set Prediction Networks »
Yan Zhang · Jonathon Hare · Adam Prugel-Bennett -
2019 Poster: When to Trust Your Model: Model-Based Policy Optimization »
Michael Janner · Justin Fu · Marvin Zhang · Sergey Levine -
2019 Poster: Selecting causal brain features with a single conditional independence test per feature »
Atalanti Mastakouri · Bernhard Schölkopf · Dominik Janzing -
2019 Poster: Guided Meta-Policy Search »
Russell Mendonca · Abhishek Gupta · Rosen Kralev · Pieter Abbeel · Sergey Levine · Chelsea Finn -
2019 Oral: HYPE: A Benchmark for Human eYe Perceptual Evaluation of Generative Models »
Sharon Zhou · Mitchell Gordon · Ranjay Krishna · Austin Narcomey · Li Fei-Fei · Michael Bernstein -
2019 Spotlight: Guided Meta-Policy Search »
Russell Mendonca · Abhishek Gupta · Rosen Kralev · Pieter Abbeel · Sergey Levine · Chelsea Finn -
2019 Oral: Causal Confusion in Imitation Learning »
Pim de Haan · Dinesh Jayaraman · Sergey Levine -
2019 Oral: Generative Modeling by Estimating Gradients of the Data Distribution »
Yang Song · Stefano Ermon -
2019 Poster: Kernel Stein Tests for Multiple Model Comparison »
Jen Ning Lim · Makoto Yamada · Bernhard Schölkopf · Wittawat Jitkrittum -
2019 Spotlight: Perceiving the arrow of time in autoregressive motion »
Kristof Meding · Dominik Janzing · Bernhard Schölkopf · Felix A. Wichmann -
2018 : SpaceSheets: Interactive Latent Space Exploration through a Spreadsheet Interface »
Tom White -
2018 : Meta-Learning to Follow Instructions, Examples, and Demonstrations »
Sergey Levine -
2018 : TBA 2 »
Sergey Levine -
2018 : Meta-Learning Language-Guided Policy Learning »
John Co-Reyes -
2018 : Control as Inference and Soft Deep RL (Sergey Levine) »
Sergey Levine -
2018 Workshop: Second Workshop on Machine Learning for Creativity and Design »
Luba Elliott · Sander Dieleman · Rebecca Fiebrink · Jesse Engel · Adam Roberts · Tom White -
2018 Workshop: Relational Representation Learning »
Aditya Grover · Paroma Varma · Frederic Sala · Christopher Ré · Jennifer Neville · Stefano Ermon · Steven Holtzen -
2018 : Datasets and Benchmarks for Causal Learning »
Csaba Szepesvari · Isabelle Guyon · Nicolai Meinshausen · David Blei · Elias Bareinboim · Bernhard Schölkopf · Pietro Perona -
2018 : TBC 9 »
Sergey Levine -
2018 : Lunch & Posters »
Haytham Fayek · German Parisi · Brian Xu · Pramod Kaushik Mudrakarta · Sophie Cerf · Sarah Wassermann · Davit Soselia · Rahaf Aljundi · Mohamed Elhoseiny · Frantzeska Lavda · Kevin J Liang · Arslan Chaudhry · Sanmit Narvekar · Vincenzo Lomonaco · Wesley Chung · Michael Chang · Ying Zhao · Zsolt Kira · Pouya Bashivan · Banafsheh Rafiee · Oleksiy Ostapenko · Andrew Jones · Christos Kaplanis · Sinan Kalkan · Dan Teng · Xu He · Vincent Liu · Somjit Nath · Sungsoo Ahn · Ting Chen · Shenyang Huang · Yash Chandak · Nathan Sprague · Martin Schrimpf · Tony Kendall · Jonathan Richard Schwarz · Michael Li · Yunshu Du · Yen-Chang Hsu · Samira Abnar · Bo Wang -
2018 : Stefano Ermon (Stanford University): Weakly Supervised Spatio-temporal Regression »
Stefano Ermon -
2018 : Coffee Break 1 (Posters) »
Ananya Kumar · Siyu Huang · Huazhe Xu · Michael Janner · Parth Chadha · Nils Thuerey · Peter Lu · Maria Bauza · Anthony Tompkins · Guanya Shi · Thomas Baumeister · André Ofner · Zhi-Qi Cheng · Yuping Luo · Deepika Bablani · Jeroen Vanbaar · Kartic Subr · Tatiana López-Guevara · Devesh Jha · Fabian Fuchs · Stefano Rosa · Alison Pouplin · Alex Ray · Qi Liu · Eric Crawford -
2018 : Learning Independent Mechanisms »
Bernhard Schölkopf -
2018 : Opening Remarks: Josh Tenenbaum »
Josh Tenenbaum -
2018 Workshop: Modeling the Physical World: Learning, Perception, and Control »
Jiajun Wu · Kelsey Allen · Kevin Smith · Jessica Hamrick · Emmanuel Dupoux · Marc Toussaint · Josh Tenenbaum -
2018 Poster: Informative Features for Model Comparison »
Wittawat Jitkrittum · Heishiro Kanagawa · Patsorn Sangkloy · James Hays · Bernhard Schölkopf · Arthur Gretton -
2018 Poster: Learning to Reconstruct Shapes from Unseen Classes »
Xiuming Zhang · Zhoutong Zhang · Chengkai Zhang · Josh Tenenbaum · Bill Freeman · Jiajun Wu -
2018 Poster: Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models »
Kurtland Chua · Roberto Calandra · Rowan McAllister · Sergey Levine -
2018 Poster: Learning to Infer Graphics Programs from Hand-Drawn Images »
Kevin Ellis · Daniel Ritchie · Armando Solar-Lezama · Josh Tenenbaum -
2018 Poster: Learning Libraries of Subroutines for Neurally–Guided Bayesian Program Induction »
Kevin Ellis · Lucas Morales · Mathias Sablé-Meyer · Armando Solar-Lezama · Josh Tenenbaum -
2018 Poster: Streamlining Variational Inference for Constraint Satisfaction Problems »
Aditya Grover · Tudor Achim · Stefano Ermon -
2018 Oral: Learning to Reconstruct Shapes from Unseen Classes »
Xiuming Zhang · Zhoutong Zhang · Chengkai Zhang · Josh Tenenbaum · Bill Freeman · Jiajun Wu -
2018 Spotlight: Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models »
Kurtland Chua · Roberto Calandra · Rowan McAllister · Sergey Levine -
2018 Spotlight: Learning to Infer Graphics Programs from Hand-Drawn Images »
Kevin Ellis · Daniel Ritchie · Armando Solar-Lezama · Josh Tenenbaum -
2018 Spotlight: Learning Libraries of Subroutines for Neurally–Guided Bayesian Program Induction »
Kevin Ellis · Lucas Morales · Mathias Sablé-Meyer · Armando Solar-Lezama · Josh Tenenbaum -
2018 Poster: Visual Object Networks: Image Generation with Disentangled 3D Representations »
Jun-Yan Zhu · Zhoutong Zhang · Chengkai Zhang · Jiajun Wu · Antonio Torralba · Josh Tenenbaum · Bill Freeman -
2018 Poster: Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance »
Neal Jean · Sang Michael Xie · Stefano Ermon -
2018 Poster: Probabilistic Model-Agnostic Meta-Learning »
Chelsea Finn · Kelvin Xu · Sergey Levine -
2018 Poster: Demystifying excessively volatile human learning: A Bayesian persistent prior and a neural approximation »
Chaitanya Ryali · Gautam Reddy · Angela Yu -
2018 Poster: Meta-Reinforcement Learning of Structured Exploration Strategies »
Abhishek Gupta · Russell Mendonca · YuXuan Liu · Pieter Abbeel · Sergey Levine -
2018 Poster: Multi-Agent Generative Adversarial Imitation Learning »
Jiaming Song · Hongyu Ren · Dorsa Sadigh · Stefano Ermon -
2018 Poster: Visual Reinforcement Learning with Imagined Goals »
Ashvin Nair · Vitchyr Pong · Murtaza Dalal · Shikhar Bahl · Steven Lin · Sergey Levine -
2018 Poster: Adaptive Skip Intervals: Temporal Abstraction for Recurrent Dynamical Models »
Alexander Neitz · Giambattista Parascandolo · Stefan Bauer · Bernhard Schölkopf -
2018 Poster: Learning to Share and Hide Intentions using Information Regularization »
DJ Strouse · Max Kleiman-Weiner · Josh Tenenbaum · Matt Botvinick · David Schwab -
2018 Spotlight: Visual Reinforcement Learning with Imagined Goals »
Ashvin Nair · Vitchyr Pong · Murtaza Dalal · Shikhar Bahl · Steven Lin · Sergey Levine -
2018 Spotlight: Meta-Reinforcement Learning of Structured Exploration Strategies »
Abhishek Gupta · Russell Mendonca · YuXuan Liu · Pieter Abbeel · Sergey Levine -
2018 Poster: Visual Memory for Robust Path Following »
Ashish Kumar · Saurabh Gupta · David Fouhey · Sergey Levine · Jitendra Malik -
2018 Poster: Learning to Exploit Stability for 3D Scene Parsing »
Yilun Du · Zhijian Liu · Hector Basevi · Ales Leonardis · Bill Freeman · Josh Tenenbaum · Jiajun Wu -
2018 Poster: End-to-End Differentiable Physics for Learning and Control »
Filipe de Avila Belbute Peres · Kevin Smith · Kelsey Allen · Josh Tenenbaum · J. Zico Kolter -
2018 Poster: Constructing Unrestricted Adversarial Examples with Generative Models »
Yang Song · Rui Shu · Nate Kushman · Stefano Ermon -
2018 Poster: Variational Inverse Control with Events: A General Framework for Data-Driven Reward Definition »
Justin Fu · Avi Singh · Dibya Ghosh · Larry Yang · Sergey Levine -
2018 Oral: Visual Memory for Robust Path Following »
Ashish Kumar · Saurabh Gupta · David Fouhey · Sergey Levine · Jitendra Malik -
2018 Spotlight: End-to-End Differentiable Physics for Learning and Control »
Filipe de Avila Belbute Peres · Kevin Smith · Kelsey Allen · Josh Tenenbaum · J. Zico Kolter -
2018 Poster: Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding »
Kexin Yi · Jiajun Wu · Chuang Gan · Antonio Torralba · Pushmeet Kohli · Josh Tenenbaum -
2018 Poster: 3D-Aware Scene Manipulation via Inverse Graphics »
Shunyu Yao · Tzu Ming Hsu · Jun-Yan Zhu · Jiajun Wu · Antonio Torralba · Bill Freeman · Josh Tenenbaum -
2018 Poster: Data-Efficient Hierarchical Reinforcement Learning »
Ofir Nachum · Shixiang (Shane) Gu · Honglak Lee · Sergey Levine -
2018 Poster: Beauty-in-averageness and its contextual modulations: A Bayesian statistical account »
Chaitanya Ryali · Angela Yu -
2018 Poster: Bias and Generalization in Deep Generative Models: An Empirical Study »
Shengjia Zhao · Hongyu Ren · Arianna Yuan · Jiaming Song · Noah Goodman · Stefano Ermon -
2018 Spotlight: Bias and Generalization in Deep Generative Models: An Empirical Study »
Shengjia Zhao · Hongyu Ren · Arianna Yuan · Jiaming Song · Noah Goodman · Stefano Ermon -
2018 Spotlight: Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding »
Kexin Yi · Jiajun Wu · Chuang Gan · Antonio Torralba · Pushmeet Kohli · Josh Tenenbaum -
2018 Poster: Where Do You Think You're Going?: Inferring Beliefs about Dynamics from Behavior »
Sid Reddy · Anca Dragan · Sergey Levine -
2018 Poster: Amortized Inference Regularization »
Rui Shu · Hung Bui · Shengjia Zhao · Mykel J Kochenderfer · Stefano Ermon -
2018 Poster: Flexible neural representation for physics prediction »
Damian Mrowca · Chengxu Zhuang · Elias Wang · Nick Haber · Li Fei-Fei · Josh Tenenbaum · Daniel Yamins -
2017 : Panel Discussion »
Matt Botvinick · Emma Brunskill · Marcos Campos · Jan Peters · Doina Precup · David Silver · Josh Tenenbaum · Roy Fox -
2017 : Generative Adversarial Imitation Learning, Stefano Ermon, Stanford »
Stefano Ermon -
2017 : Mapping the spatio-temporal dynamics of cognition in the human brain »
Aude Oliva -
2017 : Learn to learn high-dimensional models from few examples »
Josh Tenenbaum -
2017 : Poster Session 1 and Lunch »
Sumanth Dathathri · Akshay Rangamani · Prakhar Sharma · Aruni RoyChowdhury · Madhu Advani · William Guss · Chulhee Yun · Corentin Hardy · Michele Alberti · Devendra Sachan · Andreas Veit · Takashi Shinozaki · Peter Chin -
2017 : Leveraging the Crowd to Detect and Reduce the Spread of Fake News and Misinformation »
Alice Oh · Bernhard Schölkopf -
2017 : Contextual dependence of human preference for complex objects: A Bayesian statistical account »
Chaitanya Ryali -
2017 : Welcome: Josh Tenenbaum »
Josh Tenenbaum -
2017 Workshop: Workshop on Meta-Learning »
Roberto Calandra · Frank Hutter · Hugo Larochelle · Sergey Levine -
2017 Workshop: Learning Disentangled Features: from Perception to Control »
Emily Denton · Siddharth Narayanaswamy · Tejas Kulkarni · Honglak Lee · Diane Bouchacourt · Josh Tenenbaum · David Pfau -
2017 : Stefano Ermon (Stanford): Measuring Progress Towards Sustainable Development Goals with Machine Learning »
Stefano Ermon -
2017 : Panel: "How can we characterise the landscape of intelligent systems and locate human-like intelligence in it?" »
Josh Tenenbaum · Gary Marcus · Katja Hofmann -
2017 : Joshua Tenenbaum: 'Types of intelligence: why human-like AI is important' »
Josh Tenenbaum -
2017 Spotlight: Shape and Material from Sound »
Zhoutong Zhang · Qiujia Li · Zhengjia Huang · Jiajun Wu · Josh Tenenbaum · Bill Freeman -
2017 Spotlight: Scene Physics Acquisition via Visual De-animation »
Jiajun Wu · Erika Lu · Pushmeet Kohli · Bill Freeman · Josh Tenenbaum -
2017 Poster: Learning to See Physics via Visual De-animation »
Jiajun Wu · Erika Lu · Pushmeet Kohli · Bill Freeman · Josh Tenenbaum -
2017 Poster: Avoiding Discrimination through Causal Reasoning »
Niki Kilbertus · Mateo Rojas Carulla · Giambattista Parascandolo · Moritz Hardt · Dominik Janzing · Bernhard Schölkopf -
2017 Poster: Shape and Material from Sound »
Zhoutong Zhang · Qiujia Li · Zhengjia Huang · Jiajun Wu · Josh Tenenbaum · Bill Freeman -
2017 Poster: EX2: Exploration with Exemplar Models for Deep Reinforcement Learning »
Justin Fu · John Co-Reyes · Sergey Levine -
2017 Spotlight: EX2: Exploration with Exemplar Models for Deep Reinforcement Learning »
Justin Fu · John Co-Reyes · Sergey Levine -
2017 Demonstration: Deep Robotic Learning using Visual Imagination and Meta-Learning »
Chelsea Finn · Frederik Ebert · Tianhe Yu · Annie Xie · Sudeep Dasari · Pieter Abbeel · Sergey Levine -
2017 Poster: MarrNet: 3D Shape Reconstruction via 2.5D Sketches »
Jiajun Wu · Yifan Wang · Tianfan Xue · Xingyuan Sun · Bill Freeman · Josh Tenenbaum -
2017 Poster: A-NICE-MC: Adversarial Training for MCMC »
Jiaming Song · Shengjia Zhao · Stefano Ermon -
2017 Poster: Self-Supervised Intrinsic Image Decomposition »
Michael Janner · Jiajun Wu · Tejas Kulkarni · Ilker Yildirim · Josh Tenenbaum -
2017 Poster: Max-Margin Invariant Features from Transformed Unlabelled Data »
Dipan Pal · Ashwin Kannan · Gautam Arakalgud · Marios Savvides -
2017 Poster: InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations »
Yunzhu Li · Jiaming Song · Stefano Ermon -
2017 Poster: Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning »
Shixiang (Shane) Gu · Timothy Lillicrap · Richard Turner · Zoubin Ghahramani · Bernhard Schölkopf · Sergey Levine -
2017 Poster: AdaGAN: Boosting Generative Models »
Ilya Tolstikhin · Sylvain Gelly · Olivier Bousquet · Carl-Johann SIMON-GABRIEL · Bernhard Schölkopf -
2017 Poster: Neural Variational Inference and Learning in Undirected Graphical Models »
Volodymyr Kuleshov · Stefano Ermon -
2017 Tutorial: Engineering and Reverse-Engineering Intelligence Using Probabilistic Programs, Program Induction, and Deep Learning »
Josh Tenenbaum · Vikash Mansinghka -
2016 Workshop: Deep Learning for Action and Interaction »
Chelsea Finn · Raia Hadsell · David Held · Sergey Levine · Percy Liang -
2016 : Datasets, Methodology, and Challenges in Intuitive Physics »
Emmanuel Dupoux · Josh Tenenbaum -
2016 : Josh Tenenbaum »
Josh Tenenbaum -
2016 : Sergey Levine (University of California, Berkeley) »
Sergey Levine -
2016 : Reverse engineering human cooperation (or, How to build machines that treat people like people) »
Josh Tenenbaum · Max Kleiman-Weiner -
2016 : Naive Physics 101: A Tutorial »
Emmanuel Dupoux · Josh Tenenbaum -
2016 : Opening Remarks »
Josh Tenenbaum -
2016 Workshop: Intuitive Physics »
Adam Lerer · Jiajun Wu · Josh Tenenbaum · Emmanuel Dupoux · Rob Fergus -
2016 Demonstration: Neural Puppet »
Tom White -
2016 Poster: Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation »
Tejas Kulkarni · Karthik Narasimhan · Ardavan Saeedi · Josh Tenenbaum -
2016 Poster: Minimax Estimation of Maximum Mean Discrepancy with Radial Kernels »
Ilya Tolstikhin · Bharath Sriperumbudur · Bernhard Schölkopf -
2016 Poster: Solving Marginal MAP Problems with NP Oracles and Parity Constraints »
Yexiang Xue · zhiyuan li · Stefano Ermon · Carla Gomes · Bart Selman -
2016 Poster: Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling »
Jiajun Wu · Chengkai Zhang · Tianfan Xue · Bill Freeman · Josh Tenenbaum -
2016 Poster: Visual Dynamics: Probabilistic Future Frame Synthesis via Cross Convolutional Networks »
Tianfan Xue · Jiajun Wu · Katherine Bouman · Bill Freeman -
2016 Oral: Visual Dynamics: Probabilistic Future Frame Synthesis via Cross Convolutional Networks »
Tianfan Xue · Jiajun Wu · Katherine Bouman · Bill Freeman -
2016 Poster: Generative Adversarial Imitation Learning »
Jonathan Ho · Stefano Ermon -
2016 Poster: Variational Bayes on Monte Carlo Steroids »
Aditya Grover · Stefano Ermon -
2016 Poster: Adaptive Concentration Inequalities for Sequential Decision Problems »
Shengjia Zhao · Enze Zhou · Ashish Sabharwal · Stefano Ermon -
2016 Poster: Value Iteration Networks »
Aviv Tamar · Sergey Levine · Pieter Abbeel · YI WU · Garrett Thomas -
2016 Oral: Value Iteration Networks »
Aviv Tamar · Sergey Levine · Pieter Abbeel · YI WU · Garrett Thomas -
2016 Poster: Sampling for Bayesian Program Learning »
Kevin Ellis · Armando Solar-Lezama · Josh Tenenbaum -
2016 Poster: Consistent Kernel Mean Estimation for Functions of Random Variables »
Carl-Johann Simon-Gabriel · Adam Scibior · Ilya Tolstikhin · Bernhard Schölkopf -
2016 Poster: Probing the Compositionality of Intuitive Functions »
Eric Schulz · Josh Tenenbaum · David Duvenaud · Maarten Speekenbrink · Samuel J Gershman -
2015 Workshop: Black box learning and inference »
Josh Tenenbaum · Jan-Willem van de Meent · Tejas Kulkarni · S. M. Ali Eslami · Brooks Paige · Frank Wood · Zoubin Ghahramani -
2015 : Deep Robotic Learning »
Sergey Levine -
2015 : Discussion Panel with Morning Speakers (Day 1) »
Pedro Domingos · Stephen H Muggleton · Rina Dechter · Josh Tenenbaum -
2015 : Cognitive Foundations for Common-Sense Knowledge Representation and Reasoning »
Josh Tenenbaum -
2015 Poster: Softstar: Heuristic-Guided Probabilistic Inference »
Mathew Monfort · Brenden M Lake · Brenden Lake · Brian Ziebart · Patrick Lucey · Josh Tenenbaum -
2015 Poster: Deep Convolutional Inverse Graphics Network »
Tejas Kulkarni · William Whitney · Pushmeet Kohli · Josh Tenenbaum -
2015 Spotlight: Deep Convolutional Inverse Graphics Network »
Tejas Kulkarni · William Whitney · Pushmeet Kohli · Josh Tenenbaum -
2015 Poster: Galileo: Perceiving Physical Object Properties by Integrating a Physics Engine with Deep Learning »
Jiajun Wu · Ilker Yildirim · Joseph Lim · Bill Freeman · Josh Tenenbaum -
2015 Poster: Learning visual biases from human imagination »
Carl Vondrick · Hamed Pirsiavash · Aude Oliva · Antonio Torralba -
2015 Poster: Unsupervised Learning by Program Synthesis »
Kevin Ellis · Armando Solar-Lezama · Josh Tenenbaum -
2014 Workshop: Novel Trends and Applications in Reinforcement Learning »
Csaba Szepesvari · Marc Deisenroth · Sergey Levine · Pedro Ortega · Brian Ziebart · Emma Brunskill · Naftali Tishby · Gerhard Neumann · Daniel Lee · Sridhar Mahadevan · Pieter Abbeel · David Silver · Vicenç Gómez -
2014 Workshop: 3rd NIPS Workshop on Probabilistic Programming »
Daniel Roy · Josh Tenenbaum · Thomas Dietterich · Stuart J Russell · YI WU · Ulrik R Beierholm · Alp Kucukelbir · Zenna Tavares · Yura Perov · Daniel Lee · Brian Ruttenberg · Sameer Singh · Michael Hughes · Marco Gaboardi · Alexey Radul · Vikash Mansinghka · Frank Wood · Sebastian Riedel · Prakash Panangaden -
2014 Poster: Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics »
Sergey Levine · Pieter Abbeel -
2014 Spotlight: Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics »
Sergey Levine · Pieter Abbeel -
2014 Poster: Learning Deep Features for Scene Recognition using Places Database »
Bolei Zhou · Agata Lapedriza · Jianxiong Xiao · Antonio Torralba · Aude Oliva -
2014 Spotlight: Learning Deep Features for Scene Recognition using Places Database »
Bolei Zhou · Agata Lapedriza · Jianxiong Xiao · Antonio Torralba · Aude Oliva -
2014 Poster: Kernel Mean Estimation via Spectral Filtering »
Krikamol Muandet · Bharath Sriperumbudur · Bernhard Schölkopf -
2013 Workshop: Deep Learning »
Yoshua Bengio · Hugo Larochelle · Russ Salakhutdinov · Tomas Mikolov · Matthew D Zeiler · David Mcallester · Nando de Freitas · Josh Tenenbaum · Jian Zhou · Volodymyr Mnih -
2013 Workshop: Crowdsourcing: Theory, Algorithms and Applications »
Jennifer Wortman Vaughan · Greg Stoddard · Chien-Ju Ho · Adish Singla · Michael Bernstein · Devavrat Shah · Arpita Ghosh · Evgeniy Gabrilovich · Denny Zhou · Nikhil Devanur · Xi Chen · Alexander Ihler · Qiang Liu · Genevieve Patterson · Ashwinkumar Badanidiyuru Varadaraja · Hossein Azari Soufiani · Jacob Whitehill -
2013 Workshop: Modern Nonparametric Methods in Machine Learning »
Arthur Gretton · Mladen Kolar · Samory Kpotufe · John Lafferty · Han Liu · Bernhard Schölkopf · Alexander Smola · Rob Nowak · Mikhail Belkin · Lorenzo Rosasco · peter bickel · Yue Zhao -
2013 Workshop: NIPS 2013 Workshop on Causality: Large-scale Experiment Design and Inference of Causal Mechanisms »
Isabelle Guyon · Leon Bottou · Bernhard Schölkopf · Alexander Statnikov · Evelyne Viegas · james m robins -
2013 Poster: Variational Policy Search via Trajectory Optimization »
Sergey Levine · Vladlen Koltun -
2013 Poster: The Randomized Dependence Coefficient »
David Lopez-Paz · Philipp Hennig · Bernhard Schölkopf -
2013 Poster: One-shot learning by inverting a compositional causal process »
Brenden M Lake · Russ Salakhutdinov · Josh Tenenbaum -
2013 Poster: Statistical analysis of coupled time series with Kernel Cross-Spectral Density operators. »
Michel Besserve · Nikos K Logothetis · Bernhard Schölkopf -
2013 Poster: Causal Inference on Time Series using Restricted Structural Equation Models »
Jonas Peters · Dominik Janzing · Bernhard Schölkopf -
2013 Poster: Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs »
Vikash Mansinghka · Tejas D Kulkarni · Yura N Perov · Josh Tenenbaum -
2013 Oral: Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs »
Vikash Mansinghka · Tejas D Kulkarni · Yura N Perov · Josh Tenenbaum -
2013 Poster: Embed and Project: Discrete Sampling with Universal Hashing »
Stefano Ermon · Carla Gomes · Ashish Sabharwal · Bart Selman -
2012 Poster: Learning from Distributions via Support Measure Machines »
Krikamol Muandet · Kenji Fukumizu · Francesco Dinuzzo · Bernhard Schölkopf -
2012 Spotlight: Learning from Distributions via Support Measure Machines »
Krikamol Muandet · Kenji Fukumizu · Francesco Dinuzzo · Bernhard Schölkopf -
2012 Poster: Semi-Supervised Domain Adaptation with Non-Parametric Copulas »
David Lopez-Paz · José Miguel Hernández-Lobato · Bernhard Schölkopf -
2012 Poster: Density Propagation and Improved Bounds on the Partition Function »
Stefano Ermon · Carla Gomes · Ashish Sabharwal · Bart Selman -
2012 Spotlight: Semi-Supervised Domain Adaptation with Non-Parametric Copulas »
David Lopez-Paz · José Miguel Hernández-Lobato · Bernhard Schölkopf -
2012 Poster: The representer theorem for Hilbert spaces: a necessary and sufficient condition »
Francesco Dinuzzo · Bernhard Schölkopf -
2012 Poster: Towards a learning-theoretic analysis of spike-timing dependent plasticity »
David Balduzzi · Michel Besserve -
2011 Workshop: Challenges in Learning Hierarchical Models: Transfer Learning and Optimization »
Quoc V. Le · Marc'Aurelio Ranzato · Russ Salakhutdinov · Josh Tenenbaum · Andrew Y Ng -
2011 Workshop: Philosophy and Machine Learning »
Marcello Pelillo · Joachim M Buhmann · Tiberio Caetano · Bernhard Schölkopf · Larry Wasserman -
2011 Workshop: Cosmology meets Machine Learning »
Michael Hirsch · Sarah Bridle · Bernhard Schölkopf · Phil Marshall · Stefan Harmeling · Mark Girolami -
2011 Poster: Learning to Learn with Compound HD Models »
Russ Salakhutdinov · Josh Tenenbaum · Antonio Torralba -
2011 Poster: Understanding the Intrinsic Memorability of Images »
Phillip Isola · Devi Parikh · Antonio Torralba · Aude Oliva -
2011 Spotlight: Learning to Learn with Compound HD Models »
Russ Salakhutdinov · Josh Tenenbaum · Antonio Torralba -
2011 Invited Talk: From kernels to causal inference »
Bernhard Schölkopf -
2011 Poster: Accelerated Adaptive Markov Chain for Partition Function Computation »
Stefano Ermon · Carla Gomes · Ashish Sabharwal · Bart Selman -
2011 Poster: Recovering Intrinsic Images with a Global Sparsity Prior on Reflectance »
Peter Gehler · Carsten Rother · Martin Kiefel · Lumin Zhang · Bernhard Schölkopf -
2011 Spotlight: Accelerated Adaptive Markov Chain for Partition Function Computation »
Stefano Ermon · Carla Gomes · Ashish Sabharwal · Bart Selman -
2011 Poster: Causal Discovery with Cyclic Additive Noise Models »
Joris M Mooij · Dominik Janzing · Tom Heskes · Bernhard Schölkopf -
2010 Workshop: Transfer Learning Via Rich Generative Models. »
Russ Salakhutdinov · Ryan Adams · Josh Tenenbaum · Zoubin Ghahramani · Tom Griffiths -
2010 Invited Talk: How to Grow a Mind: Statistics, Structure and Abstraction »
Josh Tenenbaum -
2010 Spotlight: Switched Latent Force Models for Movement Segmentation »
Mauricio A Alvarez · Jan Peters · Bernhard Schölkopf · Neil D Lawrence -
2010 Poster: Feature Construction for Inverse Reinforcement Learning »
Sergey Levine · Zoran Popovic · Vladlen Koltun -
2010 Poster: Dynamic Infinite Relational Model for Time-varying Relational Data Analysis »
Katsuhiko Ishiguro · Tomoharu Iwata · Naonori Ueda · Josh Tenenbaum -
2010 Poster: Space-Variant Single-Image Blind Deconvolution for Removing Camera Shake »
Stefan Harmeling · Michael Hirsch · Bernhard Schölkopf -
2010 Poster: Switched Latent Force Models for Movement Segmentation »
Mauricio A Alvarez · Jan Peters · Bernhard Schölkopf · Neil D Lawrence -
2010 Poster: Probabilistic latent variable models for distinguishing between cause and effect »
Joris M Mooij · Oliver Stegle · Dominik Janzing · Kun Zhang · Bernhard Schölkopf -
2010 Poster: Nonparametric Bayesian Policy Priors for Reinforcement Learning »
Finale P Doshi-Velez · David Wingate · Nicholas Roy · Josh Tenenbaum -
2009 Workshop: Bounded-rational analyses of human cognition: Bayesian models, approximate inference, and the brain »
Noah Goodman · Edward Vul · Tom Griffiths · Josh Tenenbaum -
2009 Workshop: Connectivity Inference in Neuroimaging »
Karl Friston · Moritz Grosse-Wentrup · Uta Noppeney · Bernhard Schölkopf -
2009 Workshop: Analyzing Networks and Learning With Graphs »
Edo M Airoldi · Jure Leskovec · Jon Kleinberg · Josh Tenenbaum -
2009 Poster: Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions »
Bharath Sriperumbudur · Kenji Fukumizu · Arthur Gretton · Gert Lanckriet · Bernhard Schölkopf -
2009 Poster: Perceptual Multistability as Markov Chain Monte Carlo Inference »
Samuel J Gershman · Edward Vul · Josh Tenenbaum -
2009 Poster: Help or Hinder: Bayesian Models of Social Goal Inference »
Tomer D Ullman · Chris L Baker · Owen Macindoe · Owain Evans · Noah Goodman · Josh Tenenbaum -
2009 Spotlight: Perceptual Multistability as Markov Chain Monte Carlo Inference »
Samuel J Gershman · Edward Vul · Josh Tenenbaum -
2009 Oral: Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions »
Bharath Sriperumbudur · Kenji Fukumizu · Arthur Gretton · Gert Lanckriet · Bernhard Schölkopf -
2009 Poster: Explaining human multiple object tracking as resource-constrained approximate inference in a dynamic probabilistic model »
Edward Vul · Michael C Frank · George Alvarez · Josh Tenenbaum -
2009 Oral: Explaining human multiple object tracking as resource-constrained approximate inference in a dynamic probabilistic model »
Edward Vul · Michael C Frank · George Alvarez · Josh Tenenbaum -
2009 Poster: Modelling Relational Data using Bayesian Clustered Tensor Factorization »
Ilya Sutskever · Russ Salakhutdinov · Josh Tenenbaum -
2008 Workshop: Probabilistic Programming: Universal Languages, Systems and Applications »
Daniel Roy · John Winn · David A McAllester · Vikash Mansinghka · Josh Tenenbaum -
2008 Workshop: Machine learning meets human learning »
Nathaniel D Daw · Tom Griffiths · Josh Tenenbaum · Jerry Zhu -
2008 Workshop: Causality: objectives and assessment »
Isabelle Guyon · Dominik Janzing · Bernhard Schölkopf -
2008 Mini Symposium: Computational Photography »
Bill Freeman · Bernhard Schölkopf -
2008 Poster: Characteristic Kernels on Groups and Semigroups »
Kenji Fukumizu · Bharath Sriperumbudur · Arthur Gretton · Bernhard Schölkopf -
2008 Oral: Characteristic Kernels on Groups and Semigroups »
Kenji Fukumizu · Bharath Sriperumbudur · Arthur Gretton · Bernhard Schölkopf -
2008 Poster: Nonlinear causal discovery with additive noise models »
Patrik O Hoyer · Dominik Janzing · Joris M Mooij · Jonas Peters · Bernhard Schölkopf -
2008 Poster: Effects of Stimulus Type and of Error-Correcting Code Design on BCI Speller Performance »
Jeremy Hill · Jason Farquhar · Suzanne Martens · Felix Bießmann · Bernhard Schölkopf -
2008 Poster: Bayesian Experimental Design of Magnetic Resonance Imaging Sequences »
Matthias Seeger · Hannes Nickisch · Rolf Pohmann · Bernhard Schölkopf -
2008 Spotlight: Nonlinear causal discovery with additive noise models »
Patrik O Hoyer · Dominik Janzing · Joris M Mooij · Jonas Peters · Bernhard Schölkopf -
2008 Spotlight: Bayesian Experimental Design of Magnetic Resonance Imaging Sequences »
Matthias Seeger · Hannes Nickisch · Rolf Pohmann · Bernhard Schölkopf -
2008 Spotlight: Effects of Stimulus Type and of Error-Correcting Code Design on BCI Speller Performance »
Jeremy Hill · Jason Farquhar · Suzanne Martens · Felix Bießmann · Bernhard Schölkopf -
2008 Poster: An empirical Analysis of Domain Adaptation Algorithms for Genomic Sequence Analysis »
Gabriele B Schweikert · Christian Widmer · Bernhard Schölkopf · Gunnar Rätsch -
2008 Poster: Diffeomorphic Dimensionality Reduction »
Christian Walder · Bernhard Schölkopf -
2007 Workshop: The Grammar of Vision: Probabilistic Grammar-Based Models for Visual Scene Understanding and Object Categorization »
Virginia Savova · Josh Tenenbaum · Leslie Kaelbling · Alan Yuille -
2007 Spotlight: A Bayesian Framework for Cross-Situational Word-Learning »
Michael C Frank · Noah Goodman · Josh Tenenbaum -
2007 Spotlight: Kernel Measures of Conditional Dependence »
Kenji Fukumizu · Arthur Gretton · Xiaohai Sun · Bernhard Schölkopf -
2007 Poster: An Analysis of Inference with the Universum »
Fabian H Sinz · Olivier Chapelle · Alekh Agarwal · Bernhard Schölkopf -
2007 Poster: Kernel Measures of Conditional Dependence »
Kenji Fukumizu · Arthur Gretton · Xiaohai Sun · Bernhard Schölkopf -
2007 Poster: A Bayesian Framework for Cross-Situational Word-Learning »
Michael C Frank · Noah Goodman · Josh Tenenbaum -
2007 Poster: A complexity measure for intuitive theories »
Charles Kemp · Noah Goodman · Josh Tenenbaum -
2007 Spotlight: An Analysis of Inference with the Universum »
Fabian H Sinz · Olivier Chapelle · Alekh Agarwal · Bernhard Schölkopf -
2007 Spotlight: A Kernel Statistical Test of Independence »
Arthur Gretton · Kenji Fukumizu · Choon Hui Teo · Le Song · Bernhard Schölkopf · Alexander Smola -
2007 Poster: A Kernel Statistical Test of Independence »
Arthur Gretton · Kenji Fukumizu · Choon Hui Teo · Le Song · Bernhard Schölkopf · Alexander Smola -
2006 Poster: Implicit Surfaces with Globally Regularised and Compactly Supported Basis Functions »
Christian Walder · Bernhard Schölkopf · Olivier Chapelle -
2006 Poster: Learning Dense 3D Correspondence »
Florian Steinke · Bernhard Schölkopf · Volker Blanz -
2006 Poster: A Local Learning Approach for Clustering »
Mingrui Wu · Bernhard Schölkopf -
2006 Poster: Combining causal and similarity-based reasoning »
Charles Kemp · Patrick Shafto · Allison Berke · Josh Tenenbaum -
2006 Poster: Multiple timescales and uncertainty in motor adaptation »
Konrad P Kording · Josh Tenenbaum · Reza Shadmehr -
2006 Poster: Learning annotated hierarchies from relational data »
Daniel Roy · Charles Kemp · Vikash Mansinghka · Josh Tenenbaum -
2006 Poster: A Kernel Method for the Two-Sample-Problem »
Arthur Gretton · Karsten Borgwardt · Malte J Rasch · Bernhard Schölkopf · Alexander Smola -
2006 Poster: Correcting Sample Selection Bias by Unlabeled Data »
Jiayuan Huang · Alexander Smola · Arthur Gretton · Karsten Borgwardt · Bernhard Schölkopf -
2006 Spotlight: Correcting Sample Selection Bias by Unlabeled Data »
Jiayuan Huang · Alexander Smola · Arthur Gretton · Karsten Borgwardt · Bernhard Schölkopf -
2006 Talk: A Kernel Method for the Two-Sample-Problem »
Arthur Gretton · Karsten Borgwardt · Malte J Rasch · Bernhard Schölkopf · Alexander Smola -
2006 Talk: Learning annotated hierarchies from relational data »
Daniel Roy · Charles Kemp · Vikash Mansinghka · Josh Tenenbaum -
2006 Spotlight: Multiple timescales and uncertainty in motor adaptation »
Konrad P Kording · Josh Tenenbaum · Reza Shadmehr -
2006 Talk: Combining causal and similarity-based reasoning »
Charles Kemp · Patrick Shafto · Allison Berke · Josh Tenenbaum -
2006 Poster: Causal inference in sensorimotor integration »
Konrad P Kording · Josh Tenenbaum -
2006 Poster: A Nonparametric Approach to Bottom-Up Visual Saliency »
Wolf Kienzle · Felix A Wichmann · Bernhard Schölkopf · Matthias Franz -
2006 Poster: Learning with Hypergraphs: Clustering, Classification, and Embedding »
Denny Zhou · Jiayuan Huang · Bernhard Schölkopf -
2006 Tutorial: Bayesian Models of Human Learning and Inference »
Josh Tenenbaum