Timezone: »
Author Information
Nathalie Baracaldo (IBM Research AI)
Nathalie Baracaldo leads the AI Security and Privacy Solutions team and is a Research Staff Member at IBM’s Almaden Research Center in San Jose, CA. Nathalie is passionate about delivering machine learning solutions that are highly accurate, withstand adversarial attacks and protect data privacy. Her team focuses on two main areas: federated learning, where models are trained without directly accessing training data and adversarial machine learning, where defenses are designed to withstand potential attacks to the machine learning pipeline. Nathalie is the primary investigator for the DARPA program Guaranteeing AI Robustness Against Deception (GARD), where AI security is investigated. Her team contributes to the Adversarial Robustness 360 Toolbox (ART). Nathalie is also the co-editor of the book: “Federated Learning: A Comprehensive Overview of Methods and Applications”, 2022 available in paper and as e-book in Springer, Apple books and Amazon. Nathalie's primary research interests lie at the intersection of information security, privacy and trust. As part of her work, she has also designed and implemented secure systems in the areas of cloud computing, Platform as a Service, secure data sharing and Internet of the Things. She has also contributed to projects to design scalable systems that monitor, manage performance and manage service level agreements in cloud environments. In 2020, Nathalie received the IBM Master Inventor distinction for her contributions to the IBM Intellectual Property and innovation. Nathalie also received the 2021 Corporate Technical Recognition, one of the highest recognitions provided to IBMers for breakthrough technical achievements that have led to notable market and industry success for IBM. This recognition was awarded for Nathalie's contribution to the Trusted AI initiative. Nathalie is associated Editor IEEE Transactions on Service Computing. Nathalie received her Ph.D. degree from the University of Pittsburgh in 2016. Her dissertation focused on preventing insider threats through the use of adaptive access control systems that integrate multiple sources of contextual information. Some of the topics that she has explored in the past include secure storage systems, privacy in online social networks, secure interoperability in distributed systems, risk management and trust evaluation. During her Ph.D. studies she received the 2014 Allen Kent Award for Outstanding Contributions to the Graduate Program in Information Science by the School of Information Sciences at the University of Pittsburgh. Nathalie also holds a master’s degree with Cum Laude distinction in computer sciences from the Universidad de los Andes, Colombia. Prior to that, she earned two undergraduate degrees in Computer Science and Industrial Engineering at the same university.
Seth Neel (University of Pennsylvania)
PhD student in statistics studying fairness and privacy in learning. Advised by Aaron Roth and Michael Kearns.
Tuyen Le (AgileSoDA Corp.)
Dan Philps (City, University of London. Rothko Investment Strategies)
Dan Philps is a Computer Scientist, head of Rothko Investment Strategies and is an artificial intelligence (AI) researcher. He has 20 years of quantitative investment experience. Prior to Rothko, he was a senior fund manager at Mondrian Investment Partners. Before 1998, Philps worked as an analyst/programmer at a number of investment banks, specializing in trading and risk models. He has a BSc (Hons) from King’s College London, is a CFA charterholder, a member of CFA Society of the UK and holds a post graduate research role at City, London University.
Suheng Tao (J.P.Morgan)
Sotirios Chatzis (Cyprus University of Technology)
Toyo Suzumura (IBM Thomas J. Research Center)
Wei Wang (Intuit)
WENHANG BAO (Columbia University)
Solon Barocas (Cornell University)
Manish Raghavan (Cornell University)
Samuel Maina (IBM Research)
Reginald Bryant (IBM Research)
Kush Varshney (IBM Research)
Skyler D. Speakman (IBM Research | Africa)
Skyler Speakman is a Research Scientist at IBM Research -- Africa. His projects use data science to impact the lives of millions of people on the continent. He believes that data collected through phones and drones will fundamentally change service delivery and African development in the next decade. Skyler completed a Ph.D. in Information Systems at Carnegie Mellon University as well as a M.S. in Machine Learning. He also holds masters in Mathematics, Statistics, and Public Policy. He lives in Nairobi, Kenya with his wife and two young sons.
Navdeep Gill (H2O.ai)
Navdeep Gill is a Senior Data Scientist/Software Engineer at H2O.ai where he focuses mainly on machine learning interpretability and previously focused on GPU accelerated machine learning, automated machine learning, and the core H2O-3 platform. Prior to joining H2O.ai, Navdeep worked at Cisco focusing on data science and software development. Before that Navdeep was a researcher/analyst in several neuroscience labs at the following institutions: California State University, East Bay, University of California, San Francisco, and Smith Kettlewell Eye Research Institute. Navdeep graduated from California State University, East Bay with a M.S. in Computational Statistics, a B.S. in Statistics, and a B.A. in Psychology (minor in Mathematics).
Nicholas Schmidt (BLDS, LLC)
Kevin Compher (InQTel)
Naveen Sundar Govindarajulu (RealityEngines.AI)
Vivek Sharma (Karlsruhe Institute of Technology)
I am a postdoctoral researcher and research scientist at MIT, Harvard and KIT working with Prof. Ramesh Raskar, Prof. Rajiv Gupta, Prof. Mauricio Santillana and Prof. Rainer Stiefelhagen. Previously, I worked with Prof. Luc Van Gool (KU Leuven/ ETH Zürich).
Praneeth Vepakomma (MIT)
Tristan Swedish (MIT)
Jayashree Kalpathy-Cramer (MGH/Harvard Medical School)
Ramesh Raskar (MIT)
Shihao Zheng (Eindhoven University of Technology)
Mykola Pechenizkiy (TU Eindhoven)
Marco Schreyer (University of St. Gallen)
Li Ling (JP Morgan Chase)
Chirag Nagpal (Carnegie Mellon University)
Robert Tillman (JPMorgan AI Research)
Manuela Veloso (JPMorgan and Carnegie Mellon University)
Hanjie Chen (University of Virginia)
Xintong Wang (University of Michigan)
Michael Wellman (University of Michigan)
Matthew van Adelsberg (Capital One)
Ben Wood (J.P.Morgan)
Hans Buehler (JPMorgan)
Dr. Hans Buehler has been working in Quantitative Finance since 2001, when he started as an intern in Deutsche Bank’s Equity Derivatives team. He became global head of that team in 2006, and moved to JPMorgan in Hong Kong in 2008. Hans now runs globally Equities and Investor Services Quantitative Research (QR) in JPMorgan, covering electronic trading, cash, derivatives, financing, prime, and clearing. Hans also leads QR’s IB-wide Data Analytics initiative, bringing data-driven process optimisation to the businesses and associated functions. The mandate is to drive change through data, using modern machine learning and AI methods. Hans studied Mathematics at Humboldt University to Berlin, and holds a PhD in Financial Mathematics from Technical University in Berlin. Hans is based in London
Mahmoud Mahfouz (J. P. Morgan AI Research / Imperial College London)
Self-driven, ambitious and highly motivated AI Research associate with a deep interest in the use of machine learning in financial trading applications. Previous applied data science and front-office technology experience. Part-time PhD student at Imperial College London investigating the applications of tensor decomposition techniques in deep and reinforcement learning. Graduated with a First-class MEng degree in the top 5% of the cohort. Strong electrical and electronic engineering background, programming experience, modeling skills, and engineering mind-set. Adaptable, always eager to learn and enjoy working in fast-paced and challenging environments.
Antonios Alexos (University of Thessaly)
Megan Shearer (University of Michigan, Ann Arbor)
Antigoni Polychroniadou (JPMorgan AI Research)
Antigoni is a cryptographer research lead at JPMorgan AI Research. She completed her PostDoc at Cornell and received her PhD from Aarhus University.
Lucia Larise Stavarache (IBM)
Larise, is a Senior Solution Architect with a demonstrated history of working in the information technology and services industry; skilled in architecture with Cloud, AI & Mobile focus, Larise has solid experience in consultancy (Mobile CoC, Innovation CoC) and technical hands-on global delivery engagements or product design (Assets, Apple & IBM).
Dmitry Efimov (American Express)
Dmitry Efimov received his PhD in Mathematics from Moscow State University, Russia in 2007. In 2008 he joined the Department of Mathematical Analysis, Faculty of Mechanics and Mathematics, Moscow State University, as an Assistant Professor. His research interests included several important topics in functional and complex analysis (such as structural properties of spaces of holomorphic functions in the upper half-plane). In 2013 Dmitry with colleagues has published the monography "Boundary properties of analytic functions (further contribution)" with their main results. In 2012 he relocated to United Arab Emirates and joined Department of Mathematics and Statistics in American University of Sharjah as an Assistant Professor. During his work in UAE Dmitry became interested in Applied Machine Learning and started participating in Data Science competitions organized on Kaggle platform. During that time he solved more than 40 different problems and became winner or took prizes in the 11 competitions: 2016 3rd/5123 Santander Customer Satisfaction contest 2016 2nd/40 Cervical Cancer Screening contest 2015 3rd/59 Western Australia Rental Prices, Deloitte 2015 3rd/414 Avito Context Ad Clicks Challenge 2015 2nd/1306 West Nile Virus Prediction 2014 1st/44 Risky Business Challenge, American Express 2013 2nd/37 As the World Churns contest, Deloitte 2013 3rd/1687 Employee Access Challenge, Amazon 2013 2nd/553 KDD Cup: Author-Paper Identification 2013 4th/237 KDD Cup: Author Disambiguation Challenge 2012 2nd/12 Predicting the Strength of Social Ties contest Simultaneously, Dmitry has started a research work in Applied Machine Learning. His main research interest included feature selection and sensitivity analysis. Dmitry has created University course in Machine Learning as a part of Mathematics Master's program. In 2017 Dmitry has been invited to join American Express as a Director - Machine Learning and Data Science in London and relocated to New York on July 2018. He continues applying his Machine Learning knowledge to solve business problems and leads team of several Machine Learning and Data Science professionals in American Express. The additional information can be found by the following links: LinkedIn profile: www.linkedin.com/in/dmitry-efimov-b44a9335 Personal web page: efimov-ml.com Github: github.com/diefimov Kaggle profile: www.kaggle.com/efimov
Johnston P Hall (H2o.ai)
Patrick Hall is a senior director for data science products at H2O.ai where he leads responsible machine learning efforts. Patrick has been an invited speaker at international research and commercial conferences, he is an author of the popular e-booklet, "An Introduction to Machine Learning Interpretability," and a frequent contributor to O'Reilly Ideas on the subjects of transparency, model management, and security for machine learning. He's also a member of several financial services working groups focused on risks of artificial intelligence and an awarded lecturer in the Department of Decision Sciences at George Washington University. Patrick studied computational chemistry at the University of Illinois before graduating from the Institute for Advanced Analytics at North Carolina State University.
Yukun Zhang (ATB Financial)
Emily Diana (Wharton School, University of Pennsylvania)
Emily Diana is a second year doctoral student in the Department of Statistics at the University of Pennsylvania, where she works in the fields of differential privacy and statistical machine learning. She holds a Master of Science in Statistics from Stanford University and a Bachelor of Arts in Applied Mathematics from Yale University. Prior to graduate school, she worked for two years as a Scientific Software Developer at Lawrence Livermore National Laboratory, where she helped develop codes for massively parallel physics simulations.
Sumitra Ganesh (JPMorgan - AI Research)
Vineeth Ravi (JPMorgan AI Research)
Swetasudha Panda (Oracle Labs)
Xavier Renard (AXA)
Matthew Jagielski (Northeastern University)
Yonadav Shavit (Harvard)
Joshua Williams (Carnegie Mellon University)
Haoran Wei (University of Delaware)
Shuang (Sophie) Zhai (Iowa State University)
Xinyi Li (Columbia University)
Hongda Shen (University of Alabama in Huntsville)
Daiki Matsunaga (IBM Japan)
Jaesik Choi (Ulsan National Institute of Science and Technology)
Alexis Laignelet (Imperial College London)
Batuhan Guler (Imperial College London)
Jacobo Roa Vicens (JP Morgan Chase & Co)
Ajit Desai (Bank of Canada)
* Currently working as a Data Scientist in the economic and financial research department at the Bank of Canada. * Hold a Ph.D. in computational science and engineering from Carleton University and M.S. in aerospace engineering from IIT Madras. * My primary research focus is on utilizing artificial intelligence and machine learning tools and techniques on payments systems data. * In the past, I have worked on developing scalable algorithms for stochastic PDEs using high-performance computing. Also, I have focused on uncertainty quantification and the stochastic simulations of various engineering systems.
Jonathan Aigrain (AXA)
Robert Samoilescu (University Politehnica Bucharest)
More from the Same Authors
-
2020 : DAMS: Meta-estimation of private sketch data structures for differentially private contact tracing »
Praneeth Vepakomma -
2020 : Adversarial Attacks and Countermeasures on Private Training in MPC »
Matthew Jagielski -
2021 : Adversarial Training for Improving Model Robustness? Look at Both Prediction and Interpretation »
Hanjie Chen · Yangfeng Ji -
2021 : FLoRA: Single-shot Hyper-parameter Optimization for Federated Learning »
Yi Zhou · Parikshit Ram · Theodoros Salonidis · Nathalie Baracaldo · Horst Samulowitz · Heiko Ludwig -
2021 : Mixture of Basis for Interpretable Continual Learning with Distribution Shifts »
Mengda Xu · Sumitra Ganesh · Pranay Pasula -
2021 : Structured Stochastic Gradient MCMC: a hybrid VI and MCMC approach »
Antonios Alexos · Alex Boyd · Stephan Mandt -
2021 : Stochastic Local Winner-Takes-All Networks Enable Profound Adversarial Robustness »
Konstantinos Panousis · Sotirios Chatzis · Sergios Theodoridis -
2021 : Poster: The Many Roles that Causal Reasoning Plays in Reasoning about Fairness in Machine Learning »
Irene Y Chen · Hal Daumé III · Solon Barocas -
2022 : Explaining Predictive Uncertainty by Looking Back at Model Explanations »
Hanjie Chen · Wanyu Du · Yangfeng Ji -
2022 : Federated Continual Learning to Detect Accounting Anomalies in Financial Auditing »
Marco Schreyer · Hamed Hemati · Damian Borth · Miklos Vasarhelyi -
2022 : An Empirical Evaluation of Posterior Sampling for Constrained Reinforcement Learning »
Danil Provodin · Pratik Gajane · Mykola Pechenizkiy · Maurits Kaptein -
2022 : An Empirical Evaluation of Posterior Sampling for Constrained Reinforcement Learning »
Danil Provodin · Pratik Gajane · Mykola Pechenizkiy · Maurits Kaptein -
2022 : Addressing observational biases in algorithmic fairness assessments »
Chirag Nagpal · Olawale Salaudeen · Sanmi Koyejo · Stephen Pfohl -
2022 : Differentially Private CutMix for Split Learning with Vision Transformer »
Seungeun Oh · Jihong Park · Sihun Baek · Hyelin Nam · Praneeth Vepakomma · Ramesh Raskar · Mehdi Bennis · Seong-Lyun Kim -
2022 : Beyond Protected Attributes: Disciplined Detection of Systematic Deviations in Data »
Adebayo Oshingbesan · Winslow Omondi · Girmaw Abebe Tadesse · Celia Cintas · Skyler D. Speakman -
2022 : Benchmarking the Effect of Poisoning Defenses on the Security and Bias of the Final Model »
Nathalie Baracaldo · Kevin Eykholt · Farhan Ahmed · Yi Zhou · Shriti Priya · Taesung Lee · Swanand Kadhe · Yusong Tan · Sridevi Polavaram · Sterling Suggs -
2022 : Information-Theoretic Evaluation of Free-Text Rationales with Conditional $\mathcal{V}$-Information »
Hanjie Chen · Faeze Brahman · Xiang Ren · Yangfeng Ji · Yejin Choi · Swabha Swayamdipta -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Chirag Nagpal · Katherine Heller · Berk Ustun -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Berk Ustun · Chirag Nagpal · Katherine Heller -
2023 Poster: GRD: A Generative Approach for Interpretable Reward Redistribution in Reinforcement Learning »
Yudi Zhang · Yali Du · Biwei Huang · Ziyan Wang · Jun Wang · Meng Fang · Mykola Pechenizkiy -
2023 Poster: DISCOVER: Making Vision Networks Interpretable via Competition and Dissection »
Konstantinos Panousis · Sotirios Chatzis -
2023 Poster: Privacy Assessment on Reconstructed Images: Are Existing Evaluation Metrics Faithful to Human Perception? »
Xiaoxiao Sun · Nidham Gazagnadou · Vivek Sharma · Lingjuan Lyu · Hongdong Li · Liang Zheng -
2023 Poster: Dynamic Sparsity Is Channel-Level Sparsity Learner »
Lu Yin · Gen Li · Meng Fang · Li Shen · Tianjin Huang · Zhangyang Wang · Vlado Menkovski · Xiaolong Ma · Mykola Pechenizkiy · Shiwei Liu -
2023 Poster: Participatory Personalization in Classification »
Hailey James · Chirag Nagpal · Katherine Heller · Berk Ustun -
2023 Poster: Posthoc privacy guarantees for collaborative inference with modified Propose-Test-Release »
Abhishek Singh · Praneeth Vepakomma · Vivek Sharma · Ramesh Raskar -
2023 Poster: COOM: A Game Benchmark for Continual Reinforcement Learning »
Tristan Tomilin · Meng Fang · Yudi Zhang · Mykola Pechenizkiy -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Chirag Nagpal · Katherine Heller · Berk Ustun -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Chirag Nagpal · Katherine Heller · Berk Ustun -
2022 Workshop: Graph Learning for Industrial Applications: Finance, Crime Detection, Medicine and Social Media »
Manuela Veloso · John Dickerson · Senthil Kumar · Eren K. · Jian Tang · Jie Chen · Peter Henstock · Susan Tibbs · Ani Calinescu · Naftali Cohen · C. Bayan Bruss · Armineh Nourbakhsh -
2022 : Scalable Collaborative Learning via Representation Sharing »
Frédéric Berdoz · Abhishek Singh · Martin Jaggi · Ramesh Raskar -
2022 : Fairness Panel »
Freedom Gumedze · Rachel Cummings · Bo Li · Robert Tillman · Edward Choi -
2022 : Fast Learning of Multidimensional Hawkes Processes via Frank-Wolfe »
Renbo Zhao · Niccolo Dalmasso · Mohsen Ghassemi · Vamsi Potluru · Tucker Balch · Manuela Veloso -
2022 Workshop: Federated Learning: Recent Advances and New Challenges »
Shiqiang Wang · Nathalie Baracaldo · Olivia Choudhury · Gauri Joshi · Peter Richtarik · Praneeth Vepakomma · Han Yu -
2022 Poster: Dynamic Sparse Network for Time Series Classification: Learning What to “See” »
Qiao Xiao · Boqian Wu · Yu Zhang · Shiwei Liu · Mykola Pechenizkiy · Elena Mocanu · Decebal Constantin Mocanu -
2022 Poster: Where to Pay Attention in Sparse Training for Feature Selection? »
Ghada Sokar · Zahra Atashgahi · Mykola Pechenizkiy · Decebal Constantin Mocanu -
2022 Poster: On the Safety of Interpretable Machine Learning: A Maximum Deviation Approach »
Dennis Wei · Rahul Nair · Amit Dhurandhar · Kush Varshney · Elizabeth Daly · Moninder Singh -
2022 Poster: ASPiRe: Adaptive Skill Priors for Reinforcement Learning »
Mengda Xu · Manuela Veloso · Shuran Song -
2022 Poster: Fair Infinitesimal Jackknife: Mitigating the Influence of Biased Training Data Points Without Refitting »
Prasanna Sattigeri · Soumya Ghosh · Inkit Padhi · Pierre Dognin · Kush Varshney -
2022 Expo Demonstration: Practical Deployment of Secure Federated Learning: Challenges, Opportunities and Solutions »
Yi Zhou · Nathalie Baracaldo -
2021 : The Impact of Batch Learning in Stochastic Bandits »
Danil Provodin · Pratik Gajane · Mykola Pechenizkiy · Maurits Kaptein -
2021 : Contributed Talk 6: FLoRA: Single-shot Hyper-parameter Optimization for Federated Learning »
Yi Zhou · Parikshit Ram · Theodoros Salonidis · Nathalie Baracaldo · Horst Samulowitz · Heiko Ludwig -
2021 : The Many Roles that Causal Reasoning Plays in Reasoning about Fairness in Machine Learning »
Irene Y Chen · Hal Daumé III · Solon Barocas -
2021 Poster: CoFrNets: Interpretable Neural Architecture Inspired by Continued Fractions »
Isha Puri · Amit Dhurandhar · Tejaswini Pedapati · Karthikeyan Shanmugam · Dennis Wei · Kush Varshney -
2021 Poster: Sparse Training via Boosting Pruning Plasticity with Neuroregeneration »
Shiwei Liu · Tianlong Chen · Xiaohan Chen · Zahra Atashgahi · Lu Yin · Huanyu Kou · Li Shen · Mykola Pechenizkiy · Zhangyang Wang · Decebal Constantin Mocanu -
2021 Poster: Adaptive Machine Unlearning »
Varun Gupta · Christopher Jung · Seth Neel · Aaron Roth · Saeed Sharifi-Malvajerdi · Chris Waites -
2021 Poster: Factored Policy Gradients: Leveraging Structure for Efficient Learning in MOMDPs »
Thomas Spooner · Nelson Vadori · Sumitra Ganesh -
2020 : Contributed Talk 2: Better Together? How Externalities of Size Complicate Notions of Solidarity and Actuarial Fairness »
Kate Donahue · Solon Barocas -
2020 : Invited Talk 2: Unavoidable Tensions in Explaining Algorithmic Decisions »
Solon Barocas -
2020 Workshop: Fair AI in Finance »
Senthil Kumar · Cynthia Rudin · John Paisley · Isabelle Moulinier · C. Bayan Bruss · Eren K. · Susan Tibbs · Oluwatobi Olabiyi · Simona Gandrabur · Svitlana Vyetrenko · Kevin Compher -
2020 Workshop: Workshop on Dataset Curation and Security »
Nathalie Baracaldo · Yonatan Bisk · Avrim Blum · Michael Curry · John Dickerson · Micah Goldblum · Tom Goldstein · Bo Li · Avi Schwarzschild -
2020 Poster: Calibration of Shared Equilibria in General Sum Partially Observable Markov Games »
Nelson Vadori · Sumitra Ganesh · Prashant Reddy · Manuela Veloso -
2020 Poster: Intra-Processing Methods for Debiasing Neural Networks »
Yash Savani · Colin White · Naveen Sundar Govindarajulu -
2020 Poster: Auditing Differentially Private Machine Learning: How Private is Private SGD? »
Matthew Jagielski · Jonathan Ullman · Alina Oprea -
2020 Expo Demonstration: Beyond AutoML: AI Automation & Scaling »
Lisa Amini · Nitin Gupta · Parikshit Ram · Kiran Kate · Bhanukiran Vinzamuri · Nathalie Baracaldo · Martin Korytak · Daniel K Weidele · Dakuo Wang -
2019 : Poster Session »
Clement Canonne · Kwang-Sung Jun · Seth Neel · Di Wang · Giuseppe Vietri · Liwei Song · Jonathan Lebensold · Huanyu Zhang · Lovedeep Gondara · Ang Li · FatemehSadat Mireshghallah · Jinshuo Dong · Anand D Sarwate · Antti Koskela · Joonas Jälkö · Matt Kusner · Dingfan Chen · Mi Jung Park · Ashwin Machanavajjhala · Jayashree Kalpathy-Cramer · · Vitaly Feldman · Andrew Tomkins · Hai Phan · Hossein Esfandiari · Mimansa Jaiswal · Mrinank Sharma · Jeff Druce · Casey Meehan · Zhengli Zhao · Hsiang Hsu · Davis Railsback · Abraham Flaxman · · Julius Adebayo · Aleksandra Korolova · Jiaming Xu · Naoise Holohan · Samyadeep Basu · Matthew Joseph · My Thai · Xiaoqian Yang · Ellen Vitercik · Michael Hutchinson · Chenghong Wang · Gregory Yauney · Yuchao Tao · Chao Jin · Si Kai Lee · Audra McMillan · Rauf Izmailov · Jiayi Guo · Siddharth Swaroop · Tribhuvanesh Orekondy · Hadi Esmaeilzadeh · Kevin Procopio · Alkis Polyzotis · Jafar Mohammadi · Nitin Agrawal -
2019 : Coffee Break and Poster Session »
Rameswar Panda · Prasanna Sattigeri · Kush Varshney · Karthikeyan Natesan Ramamurthy · Harvineet Singh · Vishwali Mhasawade · Shalmali Joshi · Laleh Seyyed-Kalantari · Matthew McDermott · Gal Yona · James Atwood · Hansa Srinivasan · Yonatan Halpern · D. Sculley · Behrouz Babaki · Margarida Carvalho · Josie Williams · Narges Razavian · Haoran Zhang · Amy Lu · Irene Y Chen · Xiaojie Mao · Angela Zhou · Nathan Kallus -
2019 : Coffee + Posters »
Changhao Chen · Nils Gählert · Edouard Leurent · Johannes Lehner · Apratim Bhattacharyya · Harkirat Singh Behl · Teck Yian Lim · Shiho Kim · Jelena Novosel · Błażej Osiński · Arindam Das · Ruobing Shen · Jeffrey Hawke · Joachim Sicking · Babak Shahian Jahromi · Theja Tulabandhula · Claudio Michaelis · Evgenia Rusak · WENHANG BAO · Hazem Rashed · JP Chen · Amin Ansari · Jaekwang Cha · Mohamed Zahran · Daniele Reda · Jinhyuk Kim · Kim Dohyun · Ho Suk · Junekyo Jhung · Alexander Kister · Matthias Fahrland · Adam Jakubowski · Piotr Miłoś · Jean Mercat · Bruno Arsenali · Silviu Homoceanu · Xiao-Yang Liu · Philip Torr · Ahmad El Sallab · Ibrahim Sobh · Anurag Arnab · Krzysztof Galias -
2019 : Discussion Panel »
Manuela Veloso -
2019 : Poster Session I »
Shuangjia Zheng · Arnav Kapur · Umar Asif · Eyal Rozenberg · Cyprien Gilet · Oleksii Sidorov · Yogesh Kumar · Tom Van Steenkiste · William Boag · David Ouyang · Paul Jaeger · Sheng Liu · Aparna Balagopalan · Deepta Rajan · Marta Skreta · Nikhil Pattisapu · Jann Goschenhofer · Viraj Prabhu · Di Jin · Laura-Jayne Gardiner · Irene Li · sriram kumar · Qiyuan Hu · Mehul Motani · Justin Lovelace · Usman Roshan · Lucy Lu Wang · Ilya Valmianski · Hyeonwoo Lee · Sunil Mallya · Elias Chaibub Neto · Jonas Kemp · Marie Charpignon · Amber Nigam · Wei-Hung Weng · Sabri Boughorbel · Alexis Bellot · Lovedeep Gondara · Haoran Zhang · Taha Bahadori · John Zech · Rulin Shao · Edward Choi · Laleh Seyyed-Kalantari · Emily Aiken · Ioana Bica · Yiqiu Shen · Kieran Chin-Cheong · Subhrajit Roy · Ioana Baldini · So Yeon Min · Dirk Deschrijver · Pekka Marttinen · Damian Pascual Ortiz · Supriya Nagesh · Niklas Rindtorff · Andriy Mulyar · Katharina Hoebel · Martha Shaka · Pierre Machart · Leon Gatys · Nathan Ng · Matthias Hüser · Devin Taylor · Dennis Barbour · Natalia Martinez · Clara McCreery · Benjamin Eyre · Vivek Natarajan · Ren Yi · Ruibin Ma · Chirag Nagpal · Nan Du · Chufan Gao · Anup Tuladhar · Sam Shleifer · Jason Ren · Pouria Mashouri · Ming Yang Lu · Farideh Bagherzadeh-Khiabani · Olivia Choudhury · Maithra Raghu · Scott Fleming · Mika Jain · GUO YANG · Alena Harley · Stephen Pfohl · Elisabeth Rumetshofer · Alex Fedorov · Saloni Dash · Jacob Pfau · Sabina Tomkins · Colin Targonski · Michael Brudno · Xinyu Li · Yiyang Yu · Nisarg Patel -
2019 : Poster session »
Michael Melese Woldeyohannis · Bernardt Duvenhage · Nyamos Waigama · Asaye Bir Senay · Claire Babirye · Tensaye Ayalew · Kelechi Ogueji · Vinay Prabhu · Prabu Ravindran · Fadilulah Wahab · ChukwuNonso H Nwokoye · Paul Duckworth · Hafte Abera · Abebe Mideksa · Loubna Benabbou · Anugraha Sinha · Ivan Kiskin · Robert Soden · Tupokigwe Isagah · Rehema Mwawado · Yimer Mohammed · Bryan Wilder · Daniel Omeiza · Sunayana Rane · Richard Mgaya · Samsun Knight · Jessenia Gonzalez Villarreal · Eyob Beyene · Monika Obrocka Tulinska · Luis Fernando Cantu Diaz de Leon · Joseph Aro · Michael T Smith · Michael Famoroti · Praneeth Vepakomma · Ramesh Raskar · Debjani Bhowmick · Chukwunonso H Nwokoye · Alejandro Noriega Campero · Hope Mbelwa · Anusua Trivedi -
2019 : Poster Spotlights A (23 posters) »
DongHa Bahn · Xiaoran Xu · Shih-Chieh Su · Daniel Cunnington · Wonseok Hwang · Sarthak Dash · Alberto Camacho · Theodoros Salonidis · Shiyang Li · Yuyu Zhang · Habibeh Naderi · Zhe Zeng · Pasha Khosravi · Pedro Colon-Hernandez · Dimitris Diochnos · David Windridge · Robin Manhaeve · Vaishak Belle · Brendan Juba · Naveen Sundar Govindarajulu · Joe Bockhorst -
2019 Workshop: Robust AI in Financial Services: Data, Fairness, Explainability, Trustworthiness, and Privacy »
Alina Oprea · Avigdor Gal · Eren K. · Isabelle Moulinier · Jiahao Chen · Manuela Veloso · Senthil Kumar · Tanveer Faruquie -
2019 : Opening Remarks »
Jiahao Chen · Manuela Veloso · Senthil Kumar · Isabelle Moulinier · Avigdor Gal · Alina Oprea · Tanveer Faruquie · Eren K. -
2019 Poster: Unlocking Fairness: a Trade-off Revisited »
Michael Wick · Swetasudha Panda · Jean-Baptiste Tristan -
2018 : Lunch »
Hong Yu · Bhanu Pratap Singh Rawat · Arijit Ukil · Waheeda Saib · Jekaterina Novikova · John Hughes · Yuhui Zhang · Rahul V · Mi Jung Kim · Babak Taati · Hariharan Ravishankar · Harry Clifford · Hirofumi Kobayashi · Babak Taati · Keyang Xu · Yen-Chi Cheng · Timothy Cannings · Jayashree Kalpathy-Cramer · Jayashree Kalpathy-Cramer · Parinaz Sobhani · Kimis Perros · Wei-Hung Weng · Yordan Raykov · Lars Lorch · Mengqi Jin · Xue Teng · Michael Ferlaino · Marek Rei · Cédric Beaulac · Aman Verma · Sebastian Keller · Edmond Cunningham · Luc Evers · Victor Rodriguez · Vipul Satone · Dianbo Liu · Angeline Yasodhara · Geoff Tison · Ligin Solamen · Bryan He · Rahul Ladhania · Yipeng Shi · Md Nafiz Hamid · Pouria Mashouri · Woochan Hwang · Sejin Park · Xu Chen · Rachneet Kaur · Davis Blalock · Holly Wiberg · Parminder Bhatia · Kezi Yu · RUMENG LI · Jun Sakuma · Charles Ding · Aaron Babier · Yong Cai · A Pratap · Luke O'Connor · Allen Nie · Martin Kang · Ian Covert · Xun Wang · Zelun Luo · Serena Yeung · William Boag · Kazuki Tachikawa · Mary Saltz · Owen Lahav · Edward Lee · Eric Teasley · Michael Kamp · Nirmesh Patel · Vishwali Mhasawade · Maxim Samarin · Ryo Uchimido · Farzad Khalvati · Francisco Cruz · Laura Symul · Zaid Nabulsi · Mads Mihailescu · Rosalind Picard -
2018 : Posters and Open Discussions (see below for poster titles) »
Ramya Malur Srinivasan · Miguel Perez · Yuanyuan Liu · Ben Wood · Dan Philps · Kyle Brown · Daniel Martin · Mykola Pechenizkiy · Luca Costabello · Rongguang Wang · Suproteem Sarkar · Sangwoong Yoon · Zhuoran Xiong · Enguerrand Horel · Zhu (Drew) Zhang · Ulf Johansson · Jonathan Kochems · Gregory Sidier · Prashant Reddy · Lana Cuthbertson · Yvonne Wambui · Christelle Marfaing · Galen Harrison · Irene Unceta Mendieta · Thomas Kehler · Mark Weber · Li Ling · Ceena Modarres · Abhinav Dhall · Arash Nourian · David Byrd · Ajay Chander · Xiao-Yang Liu · Hongyang Yang · Shuang (Sophie) Zhai · Freddy Lecue · Sirui Yao · Rory McGrath · Artur Garcez · Vangelis Bacoyannis · Alexandre Garcia · Lukas Gonon · Mark Ibrahim · Melissa Louie · Omid Ardakanian · Cecilia Sönströd · Kojin Oshiba · Chaofan Chen · Suchen Jin · aldo pareja · Toyo Suzumura -
2018 : Invited Talk 4: When Algorithms Trade: Modeling AI in Financial Markets »
Michael Wellman -
2018 : Panel: Explainability, Fairness and Human Aspects in Financial Services »
Madeleine Udell · Jiahao Chen · Nitzan Mekel-Bobrov · Manuela Veloso · Jon Kleinberg · Andrea Freeman · Samik Chandarana · Jacob Sisk · Michael McBurnett -
2018 : Opening Remarks »
Manuela Veloso · Isabelle Moulinier -
2018 Workshop: Challenges and Opportunities for AI in Financial Services: the Impact of Fairness, Explainability, Accuracy, and Privacy »
Manuela Veloso · Nathan Kallus · Sameena Shah · Senthil Kumar · Isabelle Moulinier · Jiahao Chen · John Paisley -
2018 Poster: Maximum-Entropy Fine Grained Classification »
Abhimanyu Dubey · Otkrist Gupta · Ramesh Raskar · Nikhil Naik -
2018 Demonstration: Game for Detecting Backdoor Attacks on Deep Neural Networks using Activation Clustering »
Casey Dugan · Werner Geyer · Narendra Nath Joshi · Ingrid Lange · Dustin Ramsey Torres · Bryant Chen · Nathalie Baracaldo · Heiko Ludwig -
2017 : Poster Sessions »
Dennis Forster · David I Inouye · Shashank Srivastava · Martine De Cock · Srinagesh Sharma · Mateusz Kozinski · Petr Babkin · maxime he · Zhe Cui · Shivani Rao · Ramesh Raskar · Pradipto Das · Albert Zhao · Ravi Lanka -
2017 : Skyler Speakman (IBM Research Africa): Three Population Covariate Shift for Mobile Phone-based Credit Scoring »
Skyler D. Speakman -
2017 Poster: Scalable Demand-Aware Recommendation »
Jinfeng Yi · Cho-Jui Hsieh · Kush Varshney · Lijun Zhang · Yao Li -
2017 Poster: Accuracy First: Selecting a Differential Privacy Level for Accuracy Constrained ERM »
Katrina Ligett · Seth Neel · Aaron Roth · Bo Waggoner · Steven Wu -
2017 Poster: Optimized Pre-Processing for Discrimination Prevention »
Flavio Calmon · Dennis Wei · Bhanukiran Vinzamuri · Karthikeyan Natesan Ramamurthy · Kush Varshney -
2017 Poster: On Fairness and Calibration »
Geoff Pleiss · Manish Raghavan · Felix Wu · Jon Kleinberg · Kilian Weinberger -
2017 Tutorial: Fairness in Machine Learning »
Solon Barocas · Moritz Hardt -
2016 Workshop: The Future of Interactive Machine Learning »
Kory Mathewson @korymath · Kaushik Subramanian · Mark Ho · Robert Loftin · Joseph L Austerweil · Anna Harutyunyan · Doina Precup · Layla El Asri · Matthew Gombolay · Jerry Zhu · Sonia Chernova · Charles Isbell · Patrick M Pilarski · Weng-Keen Wong · Manuela Veloso · Julie A Shah · Matthew Taylor · Brenna Argall · Michael Littman -
2014 Workshop: Fairness, Accountability, and Transparency in Machine Learning »
Moritz Hardt · Solon Barocas -
2012 Poster: Trajectory-Based Short-Sighted Probabilistic Planning »
Felipe Trevizan · Manuela Veloso -
2009 Poster: Nonlinear directed acyclic structure learning with weakly additive noise models »
Robert E Tillman · Arthur Gretton · Peter Spirtes -
2008 Poster: Integrating Locally Learned Causal Structures with Overlapping Variables »
Robert E Tillman · David Danks · Clark Glymour