Timezone: »
Author Information
Benjamin Caine (Google)
Renhao Wang (University of British Columbia)
Nazmus Sakib (University of Alberta)
Master's student at CS , UAlberta Research Intern at Huawei Edmonton R & D Research topic : Robotics and Reinforcement Learning
Nana Otawara (Ochanomizu University)
Meha Kaushik (IIIT-Hyderabad)
elmira amirloo (Huawei Technologies)
Nemanja Djuric (Uber ATG)
Johanna Rock (Graz University of Technology)
Tanmay Agarwal (Carnegie Mellon University)
Tanmay Agarwal is a Master's Student in the School of Computer Science at the Carnegie Mellon University where he is pursuing his graduate education in Robotics. He is a passionate and enthusiastic researcher who believes that machine learning and artificial intelligence can bring about revolutionary changes in human life.
Angelos Filos (University of Oxford)
Panagiotis Tigkas (Autodesk)
Donsuk Lee (Indiana University)
Wootae Jeon (Kookmin University)
Nikita Jaipuria (Ford Motor Company)
Pin Wang (University of California, Berkeley)
Jinxin Zhao (Baidu USA LLC)
Liangjun Zhang (Baidu Research)
Ashutosh Singh (Purdue University)
Ershad Banijamali (University of Waterloo)
Mohsen Rohani (Huawei Technologies)
Aman Sinha (Trustworthy AI)
Ameya Joshi (Iowa State University)
Ching-Yao Chan (University of California at Berkeley)
Mohammed Abdou (Valeo)
Experienced Software Engineer with a demonstrated history of working in the automotive industry. Skilled in Machine Learning, Deep Learning, Reinforcement Learning. Strong engineering professional with a Master's degree focused in Electrical, Electronics and Communications Engineering from Cairo University especially in Deep Learning field.
Changhao Chen (University of Oxford)
Jong-Chan Kim (Kookmin University)
eslam mohamed (Valeo, Cairo university)
Matt OKelly (Trustworthy AI)
Nirvan Singhania (International Institute of Information Technology Hyderabad)
Hiroshi Tsukahara (Denso IT Laboratory, Inc.)
Atsushi Keyaki (Denso IT Laboratory, Inc.)
Praveen Palanisamy (Microsoft)
Justin Norden (Trustworthy AI)
Micol Marchetti-Bowick (Uber Technologies)
Yiming Gu (UberATG)
Hitesh Arora (Carnegie Mellon University)
Hitesh Arora is a research masters student at the Robotics Institute, School of Computer Science, CMU. He is passionate about building technological solutions to solve real world problems, particularly in the domain of robotics, computational biology and climate change. At CMU, he is working with Prof. Jeff Schneider on designing sample-efficient deep reinforcement algorithms for end-to-end self-driving. He is also researching explainable deep learning approaches for disease detection from medical images with Prof. Asim Smailagic. He graduated with a B.Tech in Computer Science from IIT Guwahati in 2015. During undergrad, he gained first-hand research experience through internships at top universities of MIT, CMU and UQ supported by various scholarships. To gain industry exposure, he worked at Microsoft for 3 years, shipping multiple hyper-scale distributed and analytics solutions currently being used by millions of cloud users. Also, Hitesh has always been driven to solve social problems. Being deeply concerned with Delhi’s alarming pollution, he pioneered the Charvesting project with the Climate Foundation NGO to solve open-rice straw burning problem and was awarded $100K grant by the government for the pilot project. He enjoys teaching and has served as a volunteer teacher to underprivileged students over the last 7 years.
Shubhankar Deshpande (Carnegie Mellon University)
Jeff Schneider (Carnegie Mellon University)
Shangling Jui (Chief AI Scientist of Kirin@Huawei)
Dr. Jui is the chief AI scientist of Huawei Kirin team. His knowledge on AI and reinforcement learning has guided the team to build the eco-system of Kirin platform. He support decisions and investment of AI to Canadian universities including UBC, SFU, UofToronto, UofAlberta, UofWaterloo, etc., through joint lab collaborations and local Huawei offices.
Vaneet Aggarwal (Purdue University)
Tryambak Gangopadhyay (Iowa State University)
As a Ph.D. student at Iowa State University, I am working as a Research Assistant at Self-aware Complex Systems Lab on Machine Learning and Deep Learning for healthcare, agriculture, and different cyber-physical systems. I am doing a concurrent Masters in Computer Science. In 2019, I did my summer internship at the Machine Learning group of Lawrence Livermore National Laboratory. I developed deep learning fusion models for clinical prediction tasks using Electronic Health Record datasets. In my Ph.D. thesis, I am focusing on implementing state-of-the-art architectures and designing new algorithms for large-scale image/video data, multivariate time series data and text data with applications focusing on cyber-physical systems. My interests include Autoencoders (For 3D and 2D Data), LSTM Models, Attention Models, Explainability for Spatiotemporal Data, Action Recognition, Anomaly Detection using ML, 3D, and 2D CNN for large-scale video datasets, Natural Language Processing, Multimodal Learning using text, time-series and images, Spatiotemporal Interpretability for Multivariate Time-Series Data. Recently, I have started developing an interest in Reinforcement Learning. Please contact me at tryambak@iastate.edu, tryambak95@gmail.com for more details about my research.
Qiaojing Yan (Waymo LLC)
More from the Same Authors
-
2020 : Paper 14: PePScenes: A Novel Dataset and Baseline for Pedestrian Action Prediction in 3D »
Amir Rasouli · Mohsen Rohani -
2020 : Paper 18: Uncertainty-aware Vehicle Orientation Estimation for Joint Detection-Prediction Models »
Carlos Vallespi · Nemanja Djuric -
2020 : Paper 37: Investigating the Effect of Sensor Modalities in Multi-Sensor Detection-Prediction Models »
Abhishek Mohta · Fang-Chieh Chou · Brian C Becker · Nemanja Djuric · Carlos Vallespi -
2020 : Paper 42: Temporally-Continuous Probabilistic Prediction using Polynomial Trajectory Parameterization »
Zhaoen Su · Nemanja Djuric · Carlos Vallespi · David Bradley -
2020 : Paper 53: A Distributed Delivery-Fleet Management Framework using Deep Reinforcement Learning and Dynamic Multi-Hop Routing »
Vaneet Aggarwal · Bharat Bhargava -
2020 : Paper 55: Physically Feasible Vehicle Trajectory Prediction »
Jerrick Hoang · Micol Marchetti-Bowick -
2021 : Cross-Modal Virtual Sensing for Combustion Instability Monitoring »
Tryambak Gangopadhyay · Vikram Ramanan · Chakravarthy S.R. · Soumik Sarkar -
2021 : Tensor Rings for Learning Circular Hidden Markov Models »
Mohammad Ali Javidian · Vaneet Aggarwal · Zubin Jacob -
2021 : Tensor Ring Parametrized Variational Quantum Circuits for Large Scale Quantum Machine Learning »
Dheeraj Peddireddy · Vipul Bansal · Zubin Jacob · Vaneet Aggarwal -
2021 : Identification of Latent Graphs: A Quantum Entropic Approach »
Mohammad Ali Javidian · Vaneet Aggarwal · Zubin Jacob -
2021 : On Efficient Uncertainty Estimation for Resource-Constrained Mobile Applications »
Johanna Rock · Tiago Azevedo · René de Jong · Daniel Ruiz · Partha Maji -
2022 : In-context Reinforcement Learning with Algorithm Distillation »
Michael Laskin · Luyu Wang · Junhyuk Oh · Emilio Parisotto · Stephen Spencer · Richie Steigerwald · DJ Strouse · Steven Hansen · Angelos Filos · Ethan Brooks · Maxime Gazeau · Himanshu Sahni · Satinder Singh · Volodymyr Mnih -
2022 : In-context Reinforcement Learning with Algorithm Distillation »
Michael Laskin · Luyu Wang · Junhyuk Oh · Emilio Parisotto · Stephen Spencer · Richie Steigerwald · DJ Strouse · Steven Hansen · Angelos Filos · Ethan Brooks · Maxime Gazeau · Himanshu Sahni · Satinder Singh · Volodymyr Mnih -
2023 Poster: AutoGO: Automated Computation Graph Optimization for Neural Network Evolution »
Mohammad Salameh · Keith Mills · Negar Hassanpour · Fred Han · Shuting Zhang · Wei Lu · Shangling Jui · CHUNHUA ZHOU · Fengyu Sun · Di Niu -
2023 Poster: ODPP: A Unified Algorithm Framework for Unsupervised Option Discovery based on Determinantal Point Process »
Jiayu Chen · Vaneet Aggarwal · Tian Lan -
2023 Poster: A Unified Approach for Maximizing Continuous DR-submodular Functions »
Mohammad Pedramfar · Christopher Quinn · Vaneet Aggarwal -
2023 Poster: Discovering Representations for Transfer with Successor Features and the Deep Option Keyboard »
Wilka Carvalho Carvalho · Andre Saraiva · Angelos Filos · Andrew Lampinen · Loic Matthey · Richard L Lewis · Honglak Lee · Satinder Singh · Danilo Jimenez Rezende · Daniel Zoran -
2023 Poster: Improved Bayesian Regret Bounds for Thompson Sampling in Reinforcement Learning »
Ahmadreza Moradipari · Mohammad Pedramfar · Modjtaba Shokrian Zini · Vaneet Aggarwal -
2023 Poster: Improved Communication Efficiency in Federated Natural Policy Gradient via ADMM-based Gradient Updates »
Guangchen Lan · Han Wang · James Anderson · Christopher Brinton · Vaneet Aggarwal -
2022 Spotlight: Lightning Talks 1B-4 »
Andrei Atanov · Shiqi Yang · Wanshan Li · Yongchang Hao · Ziquan Liu · Jiaxin Shi · Anton Plaksin · Jiaxiang Chen · Ziqi Pan · yaxing wang · Yuxin Liu · Stepan Martyanov · Alessandro Rinaldo · Yuhao Zhou · Li Niu · Qingyuan Yang · Andrei Filatov · Yi Xu · Liqing Zhang · Lili Mou · Ruomin Huang · Teresa Yeo · kai wang · Daren Wang · Jessica Hwang · Yuanhong Xu · Qi Qian · Hu Ding · Michalis Titsias · Shangling Jui · Ajay Sohmshetty · Lester Mackey · Joost van de Weijer · Hao Li · Amir Zamir · Xiangyang Ji · Antoni Chan · Rong Jin -
2022 Spotlight: Attracting and Dispersing: A Simple Approach for Source-free Domain Adaptation »
Shiqi Yang · yaxing wang · kai wang · Shangling Jui · Joost van de Weijer -
2022 Poster: PAC: Assisted Value Factorization with Counterfactual Predictions in Multi-Agent Reinforcement Learning »
Hanhan Zhou · Tian Lan · Vaneet Aggarwal -
2022 Poster: When does dough become a bagel? Analyzing the remaining mistakes on ImageNet »
Vijay Vasudevan · Benjamin Caine · Raphael Gontijo Lopes · Sara Fridovich-Keil · Rebecca Roelofs -
2022 Poster: On the Approximation of Cooperative Heterogeneous Multi-Agent Reinforcement Learning (MARL) using Mean Field Control (MFC) »
Washim Mondal · Mridul Agarwal · Vaneet Aggarwal · Satish Ukkusuri -
2022 Poster: Multi-Agent Multi-Armed Bandits with Limited Communication »
Mridul Agarwal · Vaneet Aggarwal · Kamyar Azizzadenesheli -
2022 Poster: Scalable Multi-agent Covering Option Discovery based on Kronecker Graphs »
Jiayu Chen · Jingdi Chen · Tian Lan · Vaneet Aggarwal -
2022 Poster: Attracting and Dispersing: A Simple Approach for Source-free Domain Adaptation »
Shiqi Yang · yaxing wang · kai wang · Shangling Jui · Joost van de Weijer -
2021 : Spotlight Talk: On the Approximation of Cooperative Heterogeneous Multi-Agent Reinforcement Learning (MARL) using Mean Field Control (MFC) »
Mridul Agarwal · Vaneet Aggarwal · Washim Mondal · Satish Ukkusuri -
2021 : Tensor Ring Parametrized Variational Quantum Circuits for Large Scale Quantum Machine Learning »
Dheeraj Peddireddy · Vipul Bansal · Zubin Jacob · Vaneet Aggarwal -
2021 : Tensor Rings for Learning Circular Hidden Markov Models »
Mohammad Ali Javidian · Vaneet Aggarwal · Zubin Jacob -
2021 : Controlled-rearing studies of newborn chicks and deep neural networks »
Donsuk Lee · Pranav Gujarathi · Justin Wood -
2021 : Controlled-rearing studies of newborn chicks and deep neural networks »
Donsuk Lee · Pranav Gujarathi · Justin Wood -
2021 : Reinforcement Learning for Autonomous Driving »
Jeff Schneider · Jeff Schneider -
2021 Poster: Damped Anderson Mixing for Deep Reinforcement Learning: Acceleration, Convergence, and Stabilization »
Ke Sun · Yafei Wang · Yi Liu · yingnan zhao · Bo Pan · Shangling Jui · Bei Jiang · Linglong Kong -
2021 Poster: Differentiable Spline Approximations »
Minsu Cho · Aditya Balu · Ameya Joshi · Anjana Deva Prasad · Biswajit Khara · Soumik Sarkar · Baskar Ganapathysubramanian · Adarsh Krishnamurthy · Chinmay Hegde -
2021 Poster: Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation »
Shiqi Yang · yaxing wang · Joost van de Weijer · Luis Herranz · Shangling Jui -
2020 : Interpreting the Impact of Weather on Crop Yield Using Attention »
Tryambak Gangopadhyay -
2020 : FireNet - Dense Forecasting of Wildfire Smoke Particulate Matter Using Sparsity Invariant CNNs - Renhao Wang »
Renhao Wang -
2020 : Q&A: Pin Wang »
Pin Wang -
2020 : Invited Talk: Pin Wang »
Pin Wang -
2020 Poster: Equivariant Networks for Hierarchical Structures »
Renhao Wang · Marjan Albooyeh · Siamak Ravanbakhsh -
2020 Oral: Equivariant Networks for Hierarchical Structures »
Renhao Wang · Marjan Albooyeh · Siamak Ravanbakhsh -
2019 : Coffee + Posters »
Changhao Chen · Nils Gählert · Edouard Leurent · Johannes Lehner · Apratim Bhattacharyya · Harkirat Singh Behl · Teck Yian Lim · Shiho Kim · Jelena Novosel · Błażej Osiński · Arindam Das · Ruobing Shen · Jeffrey Hawke · Joachim Sicking · Babak Shahian Jahromi · Theja Tulabandhula · Claudio Michaelis · Evgenia Rusak · WENHANG BAO · Hazem Rashed · JP Chen · Amin Ansari · Jaekwang Cha · Mohamed Zahran · Daniele Reda · Jinhyuk Kim · Kim Dohyun · Ho Suk · Junekyo Jhung · Alexander Kister · Matthias Fahrland · Adam Jakubowski · Piotr Miłoś · Jean Mercat · Bruno Arsenali · Silviu Homoceanu · Xiao-Yang Liu · Philip Torr · Ahmad El Sallab · Ibrahim Sobh · Anurag Arnab · Krzysztof Galias -
2019 Workshop: Emergent Communication: Towards Natural Language »
Abhinav Gupta · Michael Noukhovitch · Cinjon Resnick · Natasha Jaques · Angelos Filos · Marie Ossenkopf · Angeliki Lazaridou · Jakob Foerster · Ryan Lowe · Douwe Kiela · Kyunghyun Cho -
2019 : Poster Session »
Ahana Ghosh · Javad Shafiee · Akhilan Boopathy · Alex Tamkin · Theodoros Vasiloudis · Vedant Nanda · Ali Baheri · Paul Fieguth · Andrew Bennett · Guanya Shi · Hao Liu · Arushi Jain · Jacob Tyo · Benjie Wang · Boxiao Chen · Carroll Wainwright · Chandramouli Shama Sastry · Chao Tang · Daniel S. Brown · David Inouye · David Venuto · Dhruv Ramani · Dimitrios Diochnos · Divyam Madaan · Dmitrii Krashenikov · Joel Oren · Doyup Lee · Eleanor Quint · elmira amirloo · Matteo Pirotta · Gavin Hartnett · Geoffroy Dubourg-Felonneau · Gokul Swamy · Pin-Yu Chen · Ilija Bogunovic · Jason Carter · Javier Garcia-Barcos · Jeet Mohapatra · Jesse Zhang · Jian Qian · John Martin · Oliver Richter · Federico Zaiter · Tsui-Wei Weng · Karthik Abinav Sankararaman · Kyriakos Polymenakos · Lan Hoang · mahdieh abbasi · Marco Gallieri · Mathieu Seurin · Matteo Papini · Matteo Turchetta · Matthew Sotoudeh · Mehrdad Hosseinzadeh · Nathan Fulton · Masatoshi Uehara · Niranjani Prasad · Oana-Maria Camburu · Patrik Kolaric · Philipp Renz · Prateek Jaiswal · Reazul Hasan Russel · Riashat Islam · Rishabh Agarwal · Alexander Aldrick · Sachin Vernekar · Sahin Lale · Sai Kiran Narayanaswami · Samuel Daulton · Sanjam Garg · Sebastian East · Shun Zhang · Soheil Dsidbari · Justin Goodwin · Victoria Krakovna · Wenhao Luo · Wesley Chung · Yuanyuan Shi · Yuh-Shyang Wang · Hongwei Jin · Ziping Xu -
2019 Poster: Offline Contextual Bayesian Optimization »
Ian Char · Youngseog Chung · Willie Neiswanger · Kirthevasan Kandasamy · Oak Nelson · Mark Boyer · Egemen Kolemen · Jeff Schneider -
2018 : Poster Session »
Zihan Ding · David Mguni · Yuzheng Zhuang · Edouard Leurent · Takuma Oda · Yulia Tachibana · Paweł Gora · Neema Davis · Nemanja Djuric · Fang-Chieh Chou · elmira amirloo -
2018 : Spotlight talks (session 3) »
Farzaneh Mahdisoltani · Frederik Kratzert · SUBBAREDDY OOTA · Mehul Motani · Tryambak Gangopadhyay · Sathwik Tejaswi Madhusudhan · Marc Rußwurm · Mahta Mousavi · Mihir Jain -
2018 : Poster Session 1 »
Stefan Gadatsch · Danil Kuzin · Navneet Kumar · Patrick Dallaire · Tom Ryder · Remus-Petru Pop · Nathan Hunt · Adam Kortylewski · Sophie Burkhardt · Mahmoud Elnaggar · Dieterich Lawson · Yifeng Li · Jongha (Jon) Ryu · Juhan Bae · Micha Livne · Tim Pearce · Mariia Vladimirova · Jason Ramapuram · Jiaming Zeng · Xinyu Hu · Jiawei He · Danielle Maddix · Arunesh Mittal · Albert Shaw · Tuan Anh Le · Alexander Sagel · Lisha Chen · Victor Gallego · Mahdi Karami · Zihao Zhang · Tal Kachman · Noah Weber · Matt Benatan · Kumar K Sricharan · Vincent Cartillier · Ivan Ovinnikov · Buu Phan · Mahmoud Hossam · Liu Ziyin · Valerii Kharitonov · Eugene Golikov · Qiang Zhang · Jae Myung Kim · Sebastian Farquhar · Jishnu Mukhoti · Xu Hu · Gregory Gundersen · Lavanya Sita Tekumalla · Paris Perdikaris · Ershad Banijamali · Siddhartha Jain · Ge Liu · Martin Gottwald · Katy Blumer · Sukmin Yun · Ranganath Krishnan · Roman Novak · Yilun Du · Yu Gong · Beliz Gokkaya · Jessica Ai · Daniel Duckworth · Johannes von Oswald · Christian Henning · Louis-Philippe Morency · Ali Ghodsi · Mahesh Subedar · Jean-Pascal Pfister · Rémi Lebret · Chao Ma · Aleksander Wieczorek · Laurence Perreault Levasseur -
2017 : Poster session + Coffee break »
Mikael Kågebäck · Igor Melnyk · Amir-Hossein Karimi · Gino Brunner · Ershad Banijamali · Chris Donahue · Jake Zhao · Giambattista Parascandolo · Valentin Thomas · Abhishek Kumar · Chris Burgess · Amanda Nilsson · Maria Larsson · Cian Eastwood · Momchil Peychev