Timezone: »

 
Invited Talk (Posner Lecture)
From System 1 Deep Learning to System 2 Deep Learning
Yoshua Bengio

Wed Dec 11 02:15 PM -- 03:05 PM (PST) @ West Exhibition Hall C + B3

Past progress in deep learning has concentrated mostly on learning from a static dataset, mostly for perception tasks and other System 1 tasks which are done intuitively and unconsciously by humans. However, in recent years, a shift in research direction and new tools such as soft-attention and progress in deep reinforcement learning are opening the door to the development of novel deep architectures and training frameworks for addressing System 2 tasks (which are done consciously), such as reasoning, planning, capturing causality and obtaining systematic generalization in natural language processing and other applications. Such an expansion of deep learning from System 1 tasks to System 2 tasks is important to achieve the old deep learning goal of discovering high-level abstract representations because we argue that System 2 requirements will put pressure on representation learning to discover the kind of high-level concepts which humans manipulate with language. We argue that towards this objective, soft attention mechanisms constitute a key ingredient to focus computation on a few concepts at a time (a "conscious thought") as per the consciousness prior and its associated assumption that many high-level dependencies can be approximately captured by a sparse factor graph. We also argue how the agent perspective in deep learning can help put more constraints on the learned representations to capture affordances, causal variables, and model transitions in the environment. Finally, we propose that meta-learning, the modularization aspect of the consciousness prior and the agent perspective on representation learning should facilitate re-use of learned components in novel ways (even if statistically improbable, as in counterfactuals), enabling more powerful forms of compositional generalization, i.e., out-of-distribution generalization based on the hypothesis of localized (in time, space, and concept space) changes in the environment due to interventions of agents.

Author Information

Yoshua Bengio (Mila)

Yoshua Bengio is Full Professor in the computer science and operations research department at U. Montreal, scientific director and founder of Mila and of IVADO, Turing Award 2018 recipient, Canada Research Chair in Statistical Learning Algorithms, as well as a Canada AI CIFAR Chair. He pioneered deep learning and has been getting the most citations per day in 2018 among all computer scientists, worldwide. He is an officer of the Order of Canada, member of the Royal Society of Canada, was awarded the Killam Prize, the Marie-Victorin Prize and the Radio-Canada Scientist of the year in 2017, and he is a member of the NeurIPS advisory board and co-founder of the ICLR conference, as well as program director of the CIFAR program on Learning in Machines and Brains. His goal is to contribute to uncover the principles giving rise to intelligence through learning, as well as favour the development of AI for the benefit of all.

More from the Same Authors