Timezone: »
Bayesian optimal experimental design (BOED) is a principled framework for making efficient use of limited experimental resources. Unfortunately, its applicability is hampered by the difficulty of obtaining accurate estimates of the expected information gain (EIG) of an experiment. To address this, we introduce several classes of fast EIG estimators by building on ideas from amortized variational inference. We show theoretically and empirically that these estimators can provide significant gains in speed and accuracy over previous approaches. We further demonstrate the practicality of our approach on a number of end-to-end experiments.
Author Information
Adam Foster (University of Oxford)
Martin Jankowiak (Uber AI Labs)
Elias Bingham (Uber AI Labs)
Paul Horsfall (Uber AI Labs)
Yee Whye Teh (University of Oxford, DeepMind)
I am a Professor of Statistical Machine Learning at the Department of Statistics, University of Oxford and a Research Scientist at DeepMind. I am also an Alan Turing Institute Fellow and a European Research Council Consolidator Fellow. I obtained my Ph.D. at the University of Toronto (working with Geoffrey Hinton), and did postdoctoral work at the University of California at Berkeley (with Michael Jordan) and National University of Singapore (as Lee Kuan Yew Postdoctoral Fellow). I was a Lecturer then a Reader at the Gatsby Computational Neuroscience Unit, UCL, and a tutorial fellow at University College Oxford, prior to my current appointment. I am interested in the statistical and computational foundations of intelligence, and works on scalable machine learning, probabilistic models, Bayesian nonparametrics and deep learning. I was programme co-chair of ICML 2017 and AISTATS 2010.
Thomas Rainforth (University of Oxford)
Noah Goodman (Stanford University)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: Variational Bayesian Optimal Experimental Design »
Wed. Dec 11th 01:30 -- 03:30 AM Room East Exhibition Hall B + C #173
More from the Same Authors
-
2021 : DABS: a Domain-Agnostic Benchmark for Self-Supervised Learning »
Alex Tamkin · Vincent Liu · Rongfei Lu · Daniel Fein · Colin Schultz · Noah Goodman -
2021 : Certifiably Robust Variational Autoencoders »
Ben Barrett · Alexander Camuto · Matthew Willetts · Thomas Rainforth -
2021 : Uncertainty Quantification in End-to-End Implicit Neural Representations for Medical Imaging »
Bobby He · Francisca Vasconcelos · Yee Whye Teh -
2021 : Certifiably Robust Variational Autoencoders »
Ben Barrett · Alexander Camuto · Matthew Willetts · Thomas Rainforth -
2021 : Uncertainty Quantification in End-to-End Implicit Neural Representations for Medical Imaging »
Francisca Vasconcelos · Bobby He · Yee Teh -
2021 : Learning to solve complex tasks by growing knowledge culturally across generations »
Michael Tessler · Jason Madeano · Pedro Tsividis · Noah Goodman · Josh Tenenbaum -
2021 : Certifiably Robust Variational Autoencoders »
Ben Barrett · Alexander Camuto · Matthew Willetts · Thomas Rainforth -
2022 : Pre-training via Denoising for Molecular Property Prediction »
Sheheryar Zaidi · Michael Schaarschmidt · James Martens · Hyunjik Kim · Yee Whye Teh · Alvaro Sanchez Gonzalez · Peter Battaglia · Razvan Pascanu · Jonathan Godwin -
2022 : Lemma: Bootstrapping High-Level Mathematical Reasoning with Learned Symbolic Abstractions »
Zhening Li · Gabriel Poesia Reis e Silva · Omar Costilla Reyes · Noah Goodman · Armando Solar-Lezama -
2022 : On Rate-Distortion Theory in Capacity-Limited Cognition & Reinforcement Learning »
Dilip Arumugam · Mark Ho · Noah Goodman · Benjamin Van Roy -
2022 : In the ZONE: Measuring difficulty and progression in curriculum generation »
Rose Wang · Jesse Mu · Dilip Arumugam · Natasha Jaques · Noah Goodman -
2022 : When Does Re-initialization Work? »
Sheheryar Zaidi · Tudor Berariu · Hyunjik Kim · Jorg Bornschein · Claudia Clopath · Yee Whye Teh · Razvan Pascanu -
2022 Spotlight: Lightning Talks 1A-4 »
Siwei Wang · Jing Liu · Nianqiao Ju · Shiqian Li · Eloïse Berthier · Muhammad Faaiz Taufiq · Arsene Fansi Tchango · Chen Liang · Chulin Xie · Jordan Awan · Jean-Francois Ton · Ziad Kobeissi · Wenguan Wang · Xinwang Liu · Kewen Wu · Rishab Goel · Jiaxu Miao · Suyuan Liu · Julien Martel · Ruobin Gong · Francis Bach · Chi Zhang · Rob Cornish · Sanmi Koyejo · Zhi Wen · Yee Whye Teh · Yi Yang · Jiaqi Jin · Bo Li · Yixin Zhu · Vinayak Rao · Wenxuan Tu · Gaetan Marceau Caron · Arnaud Doucet · Xinzhong Zhu · Joumana Ghosn · En Zhu -
2022 Spotlight: Conformal Off-Policy Prediction in Contextual Bandits »
Muhammad Faaiz Taufiq · Jean-Francois Ton · Rob Cornish · Yee Whye Teh · Arnaud Doucet -
2022 : MATH-AI: Toward Human-Level Mathematical Reasoning »
Francois Charton · Noah Goodman · Behnam Neyshabur · Talia Ringer · Daniel Selsam -
2022 : Learning Mathematical Reasoning for Education »
Noah Goodman -
2022 : Invited Talk: Noah Goodman »
Noah Goodman -
2022 Poster: Assistive Teaching of Motor Control Tasks to Humans »
Megha Srivastava · Erdem Biyik · Suvir Mirchandani · Noah Goodman · Dorsa Sadigh -
2022 Poster: Tractable Function-Space Variational Inference in Bayesian Neural Networks »
Tim G. J. Rudner · Zonghao Chen · Yee Whye Teh · Yarin Gal -
2022 Poster: CLEVRER-Humans: Describing Physical and Causal Events the Human Way »
Jiayuan Mao · Xuelin Yang · Xikun Zhang · Noah Goodman · Jiajun Wu -
2022 Poster: Conformal Off-Policy Prediction in Contextual Bandits »
Muhammad Faaiz Taufiq · Jean-Francois Ton · Rob Cornish · Yee Whye Teh · Arnaud Doucet -
2022 Poster: A Continuous Time Framework for Discrete Denoising Models »
Andrew Campbell · Joe Benton · Valentin De Bortoli · Thomas Rainforth · George Deligiannidis · Arnaud Doucet -
2022 Poster: Rethinking Variational Inference for Probabilistic Programs with Stochastic Support »
Tim Reichelt · Luke Ong · Thomas Rainforth -
2022 Poster: Geoclidean: Few-Shot Generalization in Euclidean Geometry »
Joy Hsu · Jiajun Wu · Noah Goodman -
2022 Poster: Active Learning Helps Pretrained Models Learn the Intended Task »
Alex Tamkin · Dat Nguyen · Salil Deshpande · Jesse Mu · Noah Goodman -
2022 Poster: Foundation Posteriors for Approximate Probabilistic Inference »
Mike Wu · Noah Goodman -
2022 Poster: Riemannian Score-Based Generative Modelling »
Valentin De Bortoli · Emile Mathieu · Michael Hutchinson · James Thornton · Yee Whye Teh · Arnaud Doucet -
2022 Poster: STaR: Bootstrapping Reasoning With Reasoning »
Eric Zelikman · Yuhuai Wu · Jesse Mu · Noah Goodman -
2022 Poster: DABS 2.0: Improved Datasets and Algorithms for Universal Self-Supervision »
Alex Tamkin · Gaurab Banerjee · Mohamed Owda · Vincent Liu · Shashank Rammoorthy · Noah Goodman -
2022 Poster: Improving Intrinsic Exploration with Language Abstractions »
Jesse Mu · Victor Zhong · Roberta Raileanu · Minqi Jiang · Noah Goodman · Tim Rocktäschel · Edward Grefenstette -
2022 Poster: Active Surrogate Estimators: An Active Learning Approach to Label-Efficient Model Evaluation »
Jannik Kossen · Sebastian Farquhar · Yarin Gal · Thomas Rainforth -
2021 : Spotlight Talk: Learning to solve complex tasks by growing knowledge culturally across generations »
Noah Goodman · Josh Tenenbaum · Michael Tessler · Jason Madeano -
2021 : Multi-party referential communication in complex strategic games »
Jessica Mankewitz · Veronica Boyce · Brandon Waldon · Georgia Loukatou · Dhara Yu · Jesse Mu · Noah Goodman · Michael C Frank -
2021 Workshop: Meaning in Context: Pragmatic Communication in Humans and Machines »
Jennifer Hu · Noga Zaslavsky · Aida Nematzadeh · Michael Franke · Roger Levy · Noah Goodman -
2021 : Opening remarks »
Jennifer Hu · Noga Zaslavsky · Aida Nematzadeh · Michael Franke · Roger Levy · Noah Goodman -
2021 Poster: On Contrastive Representations of Stochastic Processes »
Emile Mathieu · Adam Foster · Yee Teh -
2021 Poster: Emergent Communication of Generalizations »
Jesse Mu · Noah Goodman -
2021 Poster: Group Equivariant Subsampling »
Jin Xu · Hyunjik Kim · Thomas Rainforth · Yee Teh -
2021 Poster: Contrastive Reinforcement Learning of Symbolic Reasoning Domains »
Gabriel Poesia · WenXin Dong · Noah Goodman -
2021 Poster: Improving Compositionality of Neural Networks by Decoding Representations to Inputs »
Mike Wu · Noah Goodman · Stefano Ermon -
2021 Poster: Powerpropagation: A sparsity inducing weight reparameterisation »
Jonathan Richard Schwarz · Siddhant Jayakumar · Razvan Pascanu · Peter E Latham · Yee Teh -
2021 Poster: Implicit Deep Adaptive Design: Policy-Based Experimental Design without Likelihoods »
Desi R Ivanova · Adam Foster · Steven Kleinegesse · Michael Gutmann · Thomas Rainforth -
2021 Poster: Online Variational Filtering and Parameter Learning »
Andrew Campbell · Yuyang Shi · Thomas Rainforth · Arnaud Doucet -
2021 Poster: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations »
Tim G. J. Rudner · Cong Lu · Michael A Osborne · Yarin Gal · Yee Teh -
2021 Poster: Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge Independent Projected Kernels »
Michael Hutchinson · Alexander Terenin · Viacheslav Borovitskiy · So Takao · Yee Teh · Marc Deisenroth -
2021 Poster: BayesIMP: Uncertainty Quantification for Causal Data Fusion »
Siu Lun Chau · Jean-Francois Ton · Javier González · Yee Teh · Dino Sejdinovic -
2021 Poster: Neural Ensemble Search for Uncertainty Estimation and Dataset Shift »
Sheheryar Zaidi · Arber Zela · Thomas Elsken · Chris C Holmes · Frank Hutter · Yee Teh -
2021 Poster: Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning »
Jannik Kossen · Neil Band · Clare Lyle · Aidan Gomez · Thomas Rainforth · Yarin Gal -
2021 Oral: Online Variational Filtering and Parameter Learning »
Andrew Campbell · Yuyang Shi · Thomas Rainforth · Arnaud Doucet -
2021 Panel: The Consequences of Massive Scaling in Machine Learning »
Noah Goodman · Melanie Mitchell · Joelle Pineau · Oriol Vinyals · Jared Kaplan -
2020 Poster: Bayesian Deep Ensembles via the Neural Tangent Kernel »
Bobby He · Balaji Lakshminarayanan · Yee Whye Teh -
2020 Poster: Bootstrapping neural processes »
Juho Lee · Yoonho Lee · Jungtaek Kim · Eunho Yang · Sung Ju Hwang · Yee Whye Teh -
2020 Poster: Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization »
Geoff Pleiss · Martin Jankowiak · David Eriksson · Anil Damle · Jacob Gardner -
2020 Poster: How Robust are the Estimated Effects of Nonpharmaceutical Interventions against COVID-19? »
Mrinank Sharma · Sören Mindermann · Jan Brauner · Gavin Leech · Anna Stephenson · Tomáš Gavenčiak · Jan Kulveit · Yee Whye Teh · Leonid Chindelevitch · Yarin Gal -
2020 Spotlight: How Robust are the Estimated Effects of Nonpharmaceutical Interventions against COVID-19? »
Mrinank Sharma · Sören Mindermann · Jan Brauner · Gavin Leech · Anna Stephenson · Tomáš Gavenčiak · Jan Kulveit · Yee Whye Teh · Leonid Chindelevitch · Yarin Gal -
2020 Poster: Language Through a Prism: A Spectral Approach for Multiscale Language Representations »
Alex Tamkin · Dan Jurafsky · Noah Goodman -
2019 : Coffee Break & Poster Session 2 »
Juho Lee · Yoonho Lee · Yee Whye Teh · Raymond A. Yeh · Yuan-Ting Hu · Alex Schwing · Sara Ahmadian · Alessandro Epasto · Marina Knittel · Ravi Kumar · Mohammad Mahdian · Christian Bueno · Aditya Sanghi · Pradeep Kumar Jayaraman · Ignacio Arroyo-Fernández · Andrew Hryniowski · Vinayak Mathur · Sanjay Singh · Shahrzad Haddadan · Vasco Portilheiro · Luna Zhang · Mert Yuksekgonul · Jhosimar Arias Figueroa · Deepak Maurya · Balaraman Ravindran · Frank NIELSEN · Philip Pham · Justin Payan · Andrew McCallum · Jinesh Mehta · Ke SUN -
2019 : Lunch break & Poster session »
Breandan Considine · Michael Innes · Du Phan · Dougal Maclaurin · Robin Manhaeve · Alexey Radul · Shashi Gowda · Ekansh Sharma · Eli Sennesh · Maxim Kochurov · Gordon Plotkin · Thomas Wiecki · Navjot Kukreja · Chung-chieh Shan · Matthew Johnson · Dan Belov · Neeraj Pradhan · Wannes Meert · Angelika Kimmig · Luc De Raedt · Brian Patton · Matthew Hoffman · Rif A. Saurous · Daniel Roy · Eli Bingham · Martin Jankowiak · Colin Carroll · Junpeng Lao · Liam Paull · Martin Abadi · Angel Rojas Jimenez · JP Chen -
2019 : Contributed Talk - Towards deep amortized clustering »
Juho Lee · Yoonho Lee · Yee Whye Teh -
2019 Poster: On the Fairness of Disentangled Representations »
Francesco Locatello · Gabriele Abbati · Thomas Rainforth · Stefan Bauer · Bernhard Schölkopf · Olivier Bachem -
2019 Poster: Stacked Capsule Autoencoders »
Adam Kosiorek · Sara Sabour · Yee Whye Teh · Geoffrey E Hinton -
2019 Poster: Continual Unsupervised Representation Learning »
Dushyant Rao · Francesco Visin · Andrei A Rusu · Razvan Pascanu · Yee Whye Teh · Raia Hadsell -
2019 Poster: Random Tessellation Forests »
Shufei Ge · Shijia Wang · Yee Whye Teh · Liangliang Wang · Lloyd Elliott -
2019 Poster: Augmented Neural ODEs »
Emilien Dupont · Arnaud Doucet · Yee Whye Teh -
2019 Poster: Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders »
Emile Mathieu · Charline Le Lan · Chris Maddison · Ryota Tomioka · Yee Whye Teh -
2018 : Panel on research process »
Zachary Lipton · Charles Sutton · Finale Doshi-Velez · Hanna Wallach · Suchi Saria · Rich Caruana · Thomas Rainforth -
2018 : Introduction of the workshop »
Razvan Pascanu · Yee Teh · Mark Ring · Marc Pickett -
2018 Workshop: Continual Learning »
Razvan Pascanu · Yee Teh · Marc Pickett · Mark Ring -
2018 Workshop: Critiquing and Correcting Trends in Machine Learning »
Thomas Rainforth · Matt Kusner · Benjamin Bloem-Reddy · Brooks Paige · Rich Caruana · Yee Whye Teh -
2018 Poster: Faithful Inversion of Generative Models for Effective Amortized Inference »
Stefan Webb · Adam Golinski · Rob Zinkov · Siddharth N · Thomas Rainforth · Yee Whye Teh · Frank Wood -
2018 Poster: Causal Inference via Kernel Deviance Measures »
Jovana Mitrovic · Dino Sejdinovic · Yee Whye Teh -
2018 Spotlight: Causal Inference via Kernel Deviance Measures »
Jovana Mitrovic · Dino Sejdinovic · Yee Whye Teh -
2018 Poster: Stochastic Expectation Maximization with Variance Reduction »
Jianfei Chen · Jun Zhu · Yee Whye Teh · Tong Zhang -
2018 Poster: Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects »
Adam Kosiorek · Hyunjik Kim · Yee Whye Teh · Ingmar Posner -
2018 Spotlight: Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects »
Adam Kosiorek · Hyunjik Kim · Yee Whye Teh · Ingmar Posner -
2018 Poster: Bias and Generalization in Deep Generative Models: An Empirical Study »
Shengjia Zhao · Hongyu Ren · Arianna Yuan · Jiaming Song · Noah Goodman · Stefano Ermon -
2018 Spotlight: Bias and Generalization in Deep Generative Models: An Empirical Study »
Shengjia Zhao · Hongyu Ren · Arianna Yuan · Jiaming Song · Noah Goodman · Stefano Ermon -
2018 Poster: Modelling sparsity, heterogeneity, reciprocity and community structure in temporal interaction data »
Xenia Miscouridou · Francois Caron · Yee Whye Teh -
2018 Poster: Multimodal Generative Models for Scalable Weakly-Supervised Learning »
Mike Wu · Noah Goodman -
2017 : Panel Session »
Neil Lawrence · Finale Doshi-Velez · Zoubin Ghahramani · Yann LeCun · Max Welling · Yee Whye Teh · Ole Winther -
2017 : Morning panel discussion »
Jürgen Schmidhuber · Noah Goodman · Anca Dragan · Pushmeet Kohli · Dhruv Batra -
2017 : "Language in context" »
Noah Goodman -
2017 : Poster Spotlights »
Francesco Locatello · Ari Pakman · Da Tang · Thomas Rainforth · Zalan Borsos · Marko Järvenpää · Eric Nalisnick · Gabriele Abbati · XIAOYU LU · Jonathan Huggins · Rachit Singh · Rui Luo -
2017 Invited Talk: On Bayesian Deep Learning and Deep Bayesian Learning »
Yee Whye Teh -
2017 Poster: Distral: Robust multitask reinforcement learning »
Yee Teh · Victor Bapst · Wojciech Czarnecki · John Quan · James Kirkpatrick · Raia Hadsell · Nicolas Heess · Razvan Pascanu -
2017 Poster: Filtering Variational Objectives »
Chris Maddison · John Lawson · George Tucker · Nicolas Heess · Mohammad Norouzi · Andriy Mnih · Arnaud Doucet · Yee Teh -
2017 Poster: Learning Disentangled Representations with Semi-Supervised Deep Generative Models »
Siddharth Narayanaswamy · Brooks Paige · Jan-Willem van de Meent · Alban Desmaison · Noah Goodman · Pushmeet Kohli · Frank Wood · Philip Torr -
2016 : Probabilistic structure discovery in time series data »
David Janz · Brooks Paige · Thomas Rainforth · Jan-Willem van de Meent -
2016 Poster: Bayesian Optimization for Probabilistic Programs »
Thomas Rainforth · Tuan Anh Le · Jan-Willem van de Meent · Michael A Osborne · Frank Wood -
2016 Poster: Gaussian Processes for Survival Analysis »
Tamara Fernandez · Nicolas Rivera · Yee Whye Teh -
2016 Poster: Neurally-Guided Procedural Models: Amortized Inference for Procedural Graphics Programs using Neural Networks »
Daniel Ritchie · Anna Thomas · Pat Hanrahan · Noah Goodman -
2015 Workshop: Scalable Monte Carlo Methods for Bayesian Analysis of Big Data »
Babak Shahbaba · Yee Whye Teh · Max Welling · Arnaud Doucet · Christophe Andrieu · Sebastian J. Vollmer · Pierre Jacob -
2015 : Random Tensor Decompositions for Regression and Collaborative Filtering »
Yee Whye Teh -
2015 Workshop: Bounded Optimality and Rational Metareasoning »
Samuel J Gershman · Falk Lieder · Tom Griffiths · Noah Goodman -
2015 Poster: A hybrid sampler for Poisson-Kingman mixture models »
Maria Lomeli · Stefano Favaro · Yee Whye Teh -
2015 Poster: Expectation Particle Belief Propagation »
Thibaut Lienart · Yee Whye Teh · Arnaud Doucet -
2014 Poster: Distributed Bayesian Posterior Sampling via Moment Sharing »
Minjie Xu · Balaji Lakshminarayanan · Yee Whye Teh · Jun Zhu · Bo Zhang -
2014 Poster: Asynchronous Anytime Sequential Monte Carlo »
Brooks Paige · Frank Wood · Arnaud Doucet · Yee Whye Teh -
2014 Oral: Asynchronous Anytime Sequential Monte Carlo »
Brooks Paige · Frank Wood · Arnaud Doucet · Yee Whye Teh -
2014 Poster: Mondrian Forests: Efficient Online Random Forests »
Balaji Lakshminarayanan · Daniel Roy · Yee Whye Teh -
2013 Poster: Learning with Invariance via Linear Functionals on Reproducing Kernel Hilbert Space »
Xinhua Zhang · Wee Sun Lee · Yee Whye Teh -
2013 Spotlight: Learning with Invariance via Linear Functionals on Reproducing Kernel Hilbert Space »
Xinhua Zhang · Wee Sun Lee · Yee Whye Teh -
2013 Poster: Bayesian Hierarchical Community Discovery »
Charles Blundell · Yee Whye Teh -
2013 Poster: Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex »
Sam Patterson · Yee Whye Teh -
2013 Spotlight: Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex »
Sam Patterson · Yee Whye Teh -
2013 Poster: Learning and using language via recursive pragmatic reasoning about other agents »
Nathaniel J Smith · Noah Goodman · Michael C Frank -
2013 Poster: Learning Stochastic Inverses »
Andreas Stuhlmüller · Jacob Taylor · Noah Goodman -
2012 Workshop: Probabilistic Programming: Foundations and Applications (2 day) »
Vikash Mansinghka · Daniel Roy · Noah Goodman -
2012 Workshop: Probabilistic Programming: Foundations and Applications (2 day) »
Vikash Mansinghka · Daniel Roy · Noah Goodman -
2012 Poster: Searching for objects driven by context »
Bogdan Alexe · Nicolas Heess · Yee Whye Teh · Vittorio Ferrari -
2012 Poster: Learning Label Trees for Probabilistic Modelling of Implicit Feedback »
Andriy Mnih · Yee Whye Teh -
2012 Poster: MCMC for continuous-time discrete-state systems »
Vinayak Rao · Yee Whye Teh -
2012 Poster: Bayesian nonparametric models for ranked data »
Francois Caron · Yee Whye Teh -
2012 Spotlight: Searching for objects driven by context »
Bogdan Alexe · Nicolas Heess · Yee Whye Teh · Vittorio Ferrari -
2012 Poster: Burn-in, bias, and the rationality of anchoring »
Falk Lieder · Tom Griffiths · Noah Goodman -
2012 Poster: Scalable imputation of genetic data with a discrete fragmentation-coagulation process »
Lloyd T Elliott · Yee Whye Teh -
2011 Poster: Modelling Genetic Variations using Fragmentation-Coagulation Processes »
Yee Whye Teh · Charles Blundell · Lloyd T Elliott -
2011 Oral: Modelling Genetic Variations using Fragmentation-Coagulation Processes »
Yee Whye Teh · Charles Blundell · Lloyd T Elliott -
2011 Poster: Gaussian process modulated renewal processes »
Vinayak Rao · Yee Whye Teh -
2011 Poster: Nonstandard Interpretations of Probabilistic Programs for Efficient Inference »
David Wingate · Noah Goodman · Andreas Stuhlmueller · Jeffrey Siskind -
2011 Tutorial: Modern Bayesian Nonparametrics »
Peter Orbanz · Yee Whye Teh -
2010 Poster: Improvements to the Sequence Memoizer »
Jan Gasthaus · Yee Whye Teh -
2009 Workshop: Nonparametric Bayes »
Dilan Gorur · Francois Caron · Yee Whye Teh · David B Dunson · Zoubin Ghahramani · Michael Jordan -
2009 Workshop: Grammar Induction, Representation of Language and Language Learning »
Alex Clark · Dorota Glowacka · John Shawe-Taylor · Yee Whye Teh · Chris J Watkins -
2009 Poster: Indian Buffet Processes with Power-law Behavior »
Yee Whye Teh · Dilan Gorur -
2009 Spotlight: Indian Buffet Processes with Power-law Behavior »
Yee Whye Teh · Dilan Gorur -
2009 Poster: Spatial Normalized Gamma Processes »
Vinayak Rao · Yee Whye Teh -
2009 Spotlight: Spatial Normalized Gamma Processes »
Vinayak Rao · Yee Whye Teh -
2008 Oral: The Mondrian Process »
Daniel Roy · Yee Whye Teh -
2008 Poster: The Infinite Factorial Hidden Markov Model »
Jurgen Van Gael · Yee Whye Teh · Zoubin Ghahramani -
2008 Poster: The Mondrian Process »
Daniel Roy · Yee Whye Teh -
2008 Spotlight: The Infinite Factorial Hidden Markov Model »
Jurgen Van Gael · Yee Whye Teh · Zoubin Ghahramani -
2008 Poster: A mixture model for the evolution of gene expression in non-homogeneous datasets »
Gerald Quon · Yee Whye Teh · Esther Chan · Michael Brudno · Tim Hughes · Quaid Morris -
2008 Poster: Dependent Dirichlet Process Spike Sorting »
Jan Gasthaus · Frank Wood · Dilan Gorur · Yee Whye Teh -
2008 Poster: An Efficient Sequential Monte Carlo Algorithm for Coalescent Clustering »
Dilan Gorur · Yee Whye Teh -
2007 Poster: Bayesian Agglomerative Clustering with Coalescents »
Yee Whye Teh · Hal Daumé III · Daniel Roy -
2007 Poster: Cooled and Relaxed Survey Propagation for MRFs »
Hai Leong Chieu · Wee Sun Lee · Yee Whye Teh -
2007 Session: Session 5: Probabilistic Representations and Learning »
Yee Whye Teh -
2007 Spotlight: Cooled and Relaxed Survey Propagation for MRFs »
Hai Leong Chieu · Wee Sun Lee · Yee Whye Teh -
2007 Oral: Bayesian Agglomerative Clustering with Coalescents »
Yee Whye Teh · Hal Daumé III · Daniel Roy -
2007 Spotlight: Collapsed Variational Inference for HDP »
Yee Whye Teh · Kenichi Kurihara · Max Welling -
2007 Poster: Collapsed Variational Inference for HDP »
Yee Whye Teh · Kenichi Kurihara · Max Welling -
2006 Poster: A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation »
Yee Whye Teh · David Newman · Max Welling