Timezone: »
Spotlight
Graph-based Discriminators: Sample Complexity and Expressiveness
Roi Livni · Yishay Mansour
A basic question in learning theory is to identify if two
distributions are identical when we have access only to examples sampled from the distributions.
This basic task is considered, for example, in the context of
Generative Adversarial Networks (GANs), where a discriminator is trained to distinguish between a real-life distribution and a synthetic distribution.
Classically, we use a hypothesis class $H$ and claim that the two
distributions are distinct if for some $h\in H$ the expected value
on the two distributions is (significantly) different.
Our starting point is the following fundamental problem: "is having
the hypothesis dependent on more than a single random example
beneficial". To address this challenge we define $k$-ary based
discriminators, which have a family of Boolean $k$-ary functions
$\G$. Each function $g\in \G$ naturally defines a hyper-graph,
indicating whether a given hyper-edge exists. A function $g\in \G$
distinguishes between two distributions, if the expected value of
$g$, on a $k$-tuple of i.i.d examples, on the two distributions is
(significantly) different.
We study the expressiveness of families of $k$-ary functions,
compared to the classical hypothesis class $H$, which is $k=1$. We
show a separation in expressiveness of $k+1$-ary versus $k$-ary
functions. This demonstrate the great benefit of having $k\geq 2$ as
distinguishers.
For $k\geq 2$ we introduce a notion similar to the VC-dimension, and
show that it controls the sample complexity. We proceed and provide upper and
lower bounds as a function of our extended notion of VC-dimension.
Author Information
Roi Livni (Tel Aviv University)
Yishay Mansour (Tel Aviv University / Google)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: Graph-based Discriminators: Sample Complexity and Expressiveness »
Thu. Dec 12th 01:00 -- 03:00 AM Room East Exhibition Hall B + C #229
More from the Same Authors
-
2021 Spotlight: Littlestone Classes are Privately Online Learnable »
Noah Golowich · Roi Livni -
2022 : Finding Safe Zones of Markov Decision Processes Policies »
Lee Cohen · Yishay Mansour · Michal Moshkovitz -
2023 Poster: Multiclass Boosting: Simple and Intuitive Weak Learning Criteria »
Nataly Brukhim · Amit Daniely · Yishay Mansour · Shay Moran -
2023 Poster: Finding Safe Zones of Markov Decision Processes Policies »
Lee Cohen · Yishay Mansour · Michal Moshkovitz -
2023 Poster: Blackbox Differential Privacy for Interactive ML »
Haim Kaplan · Yishay Mansour · Shay Moran · Kobbi Nissim · Uri Stemmer -
2023 Poster: Provably Efficient Personalized Multi-Objective Decision Making via Comparative Feedback »
Han Shao · Lee Cohen · Avrim Blum · Yishay Mansour · Aadirupa Saha · Matthew Walter -
2023 Poster: Information Theoretic Lower Bounds for Information Theoretic Upper Bounds »
Roi Livni -
2022 Poster: Benign Underfitting of Stochastic Gradient Descent »
Tomer Koren · Roi Livni · Yishay Mansour · Uri Sherman -
2022 Poster: Thinking Outside the Ball: Optimal Learning with Gradient Descent for Generalized Linear Stochastic Convex Optimization »
Idan Amir · Roi Livni · Nati Srebro -
2022 Poster: Better Best of Both Worlds Bounds for Bandits with Switching Costs »
Idan Amir · Guy Azov · Tomer Koren · Roi Livni -
2021 Workshop: Learning in Presence of Strategic Behavior »
Omer Ben-Porat · Nika Haghtalab · Annie Liang · Yishay Mansour · David Parkes -
2021 Poster: Never Go Full Batch (in Stochastic Convex Optimization) »
Idan Amir · Yair Carmon · Tomer Koren · Roi Livni -
2021 Poster: Littlestone Classes are Privately Online Learnable »
Noah Golowich · Roi Livni -
2020 Poster: Sample Complexity of Uniform Convergence for Multicalibration »
Eliran Shabat · Lee Cohen · Yishay Mansour -
2020 Poster: Can Implicit Bias Explain Generalization? Stochastic Convex Optimization as a Case Study »
Assaf Dauber · Meir Feder · Tomer Koren · Roi Livni -
2020 Poster: Prediction with Corrupted Expert Advice »
Idan Amir · Idan Attias · Tomer Koren · Yishay Mansour · Roi Livni -
2020 Spotlight: Prediction with Corrupted Expert Advice »
Idan Amir · Idan Attias · Tomer Koren · Yishay Mansour · Roi Livni -
2020 Poster: Adversarially Robust Streaming Algorithms via Differential Privacy »
Avinatan Hassidim · Haim Kaplan · Yishay Mansour · Yossi Matias · Uri Stemmer -
2020 Poster: Private Learning of Halfspaces: Simplifying the Construction and Reducing the Sample Complexity »
Haim Kaplan · Yishay Mansour · Uri Stemmer · Eliad Tsfadia -
2020 Poster: Synthetic Data Generators -- Sequential and Private »
Olivier Bousquet · Roi Livni · Shay Moran -
2020 Poster: A Limitation of the PAC-Bayes Framework »
Roi Livni · Shay Moran -
2020 Oral: Adversarially Robust Streaming Algorithms via Differential Privacy »
Avinatan Hassidim · Haim Kaplan · Yishay Mansour · Yossi Matias · Uri Stemmer -
2019 : Poster and Coffee Break 2 »
Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall -
2019 : Poster Spotlight 1 »
David Brandfonbrener · Joan Bruna · Tom Zahavy · Haim Kaplan · Yishay Mansour · Nikos Karampatziakis · John Langford · Paul Mineiro · Donghwan Lee · Niao He -
2019 Poster: Online Stochastic Shortest Path with Bandit Feedback and Unknown Transition Function »
Aviv Rosenberg · Yishay Mansour -
2019 Poster: Learning to Screen »
Alon Cohen · Avinatan Hassidim · Haim Kaplan · Yishay Mansour · Shay Moran -
2019 Poster: Individual Regret in Cooperative Nonstochastic Multi-Armed Bandits »
Yogev Bar-On · Yishay Mansour -
2017 Poster: Affine-Invariant Online Optimization and the Low-rank Experts Problem »
Tomer Koren · Roi Livni -
2017 Poster: Multi-Armed Bandits with Metric Movement Costs »
Tomer Koren · Roi Livni · Yishay Mansour -
2016 : Robust Learning and Inference »
Yishay Mansour -
2016 Poster: Online Pricing with Strategic and Patient Buyers »
Michal Feldman · Tomer Koren · Roi Livni · Yishay Mansour · Aviv Zohar -
2013 Poster: From Bandits to Experts: A Tale of Domination and Independence »
Noga Alon · Nicolò Cesa-Bianchi · Claudio Gentile · Yishay Mansour -
2013 Oral: From Bandits to Experts: A Tale of Domination and Independence »
Noga Alon · Nicolò Cesa-Bianchi · Claudio Gentile · Yishay Mansour