Timezone: »
Spotlight
Beyond Online Balanced Descent: An Optimal Algorithm for Smoothed Online Optimization
Gautam Goel · Yiheng Lin · Haoyuan Sun · Adam Wierman
We study online convex optimization in a setting where the learner seeks to minimize the sum of a per-round hitting cost and a movement cost which is incurred when changing decisions between rounds. We prove a new lower bound on the competitive ratio of any online algorithm in the setting where the costs are $m$-strongly convex and the movement costs are the squared $\ell_2$ norm. This lower bound shows that no algorithm can achieve a competitive ratio that is $o(m^{-1/2})$ as $m$ tends to zero. No existing algorithms have competitive ratios matching this bound, and we show that the state-of-the-art algorithm, Online Balanced Decent (OBD), has a competitive ratio that is $\Omega(m^{-2/3})$. We additionally propose two new algorithms, Greedy OBD (G-OBD) and Regularized OBD (R-OBD) and prove that both algorithms have an $O(m^{-1/2})$ competitive ratio. The result for G-OBD holds when the hitting costs are quasiconvex and the movement costs are the squared $\ell_2$ norm, while the result for R-OBD holds when the hitting costs are $m$-strongly convex and the movement costs are Bregman Divergences. Further, we show that R-OBD simultaneously achieves constant, dimension-free competitive ratio and sublinear regret when hitting costs are strongly convex.
Author Information
Gautam Goel (Caltech)
Yiheng Lin (Institute for Interdisciplinary Information Sciences, Tsinghua University)
Haoyuan Sun (California Institute of Technology)
Adam Wierman (California Institute of Technology)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: Beyond Online Balanced Descent: An Optimal Algorithm for Smoothed Online Optimization »
Thu. Dec 12th 01:00 -- 03:00 AM Room East Exhibition Hall B + C #50
More from the Same Authors
-
2021 Spotlight: Perturbation-based Regret Analysis of Predictive Control in Linear Time Varying Systems »
Yiheng Lin · Yang Hu · Guanya Shi · Haoyuan Sun · Guannan Qu · Adam Wierman -
2022 : Robustifying machine-learned algorithms for efficient grid operation »
Nicolas Christianson · Christopher Yeh · Tongxin Li · Mahdi Torabi Rad · Azarang Golmohammadi · Adam Wierman -
2022 : Stability Constrained Reinforcement Learning for Real-Time Voltage Control »
Jie Feng · Yuanyuan Shi · Guannan Qu · Steven Low · Anima Anandkumar · Adam Wierman -
2022 : SustainGym: A Benchmark Suite of Reinforcement Learning for Sustainability Applications »
Christopher Yeh · Victor Li · Rajeev Datta · Yisong Yue · Adam Wierman -
2022 Poster: On the Sample Complexity of Stabilizing LTI Systems on a Single Trajectory »
Yang Hu · Adam Wierman · Guannan Qu -
2022 Poster: Bounded-Regret MPC via Perturbation Analysis: Prediction Error, Constraints, and Nonlinearity »
Yiheng Lin · Yang Hu · Guannan Qu · Tongxin Li · Adam Wierman -
2021 Poster: Multi-Agent Reinforcement Learning in Stochastic Networked Systems »
Yiheng Lin · Guannan Qu · Longbo Huang · Adam Wierman -
2021 Poster: Pareto-Optimal Learning-Augmented Algorithms for Online Conversion Problems »
Bo Sun · Russell Lee · Mohammad Hajiesmaili · Adam Wierman · Danny Tsang -
2021 Poster: Perturbation-based Regret Analysis of Predictive Control in Linear Time Varying Systems »
Yiheng Lin · Yang Hu · Guanya Shi · Haoyuan Sun · Guannan Qu · Adam Wierman -
2020 Poster: Online Optimization with Memory and Competitive Control »
Guanya Shi · Yiheng Lin · Soon-Jo Chung · Yisong Yue · Adam Wierman -
2020 Poster: Scalable Multi-Agent Reinforcement Learning for Networked Systems with Average Reward »
Guannan Qu · Yiheng Lin · Adam Wierman · Na Li -
2020 Poster: The Power of Predictions in Online Control »
Chenkai Yu · Guanya Shi · Soon-Jo Chung · Yisong Yue · Adam Wierman