Spotlight
Compression with Flows via Local Bits-Back Coding
Jonathan Ho · Evan Lohn · Pieter Abbeel

Tue Dec 10th 05:25 -- 05:30 PM @ West Exhibition Hall C + B3

Likelihood-based generative models are the backbones of lossless compression due to the guaranteed existence of codes with lengths close to negative log likelihood. However, there is no guaranteed existence of computationally efficient codes that achieve these lengths, and coding algorithms must be hand-tailored to specific types of generative models to ensure computational efficiency. Such coding algorithms are known for autoregressive models and variational autoencoders, but not for general types of flow models. To fill in this gap, we introduce local bits-back coding, a new compression technique for flow models. We present efficient algorithms that instantiate our technique for many popular types of flows, and we demonstrate that our algorithms closely achieve theoretical codelengths for state-of-the-art flow models on high-dimensional data.

Author Information

Jonathan Ho (UC Berkeley)
Evan Lohn (University of California, Berkeley)
Pieter Abbeel (UC Berkeley & covariant.ai)

Pieter Abbeel is Professor and Director of the Robot Learning Lab at UC Berkeley [2008- ], Co-Director of the Berkeley AI Research (BAIR) Lab, Co-Founder of covariant.ai [2017- ], Co-Founder of Gradescope [2014- ], Advisor to OpenAI, Founding Faculty Partner AI@TheHouse venture fund, Advisor to many AI/Robotics start-ups. He works in machine learning and robotics. In particular his research focuses on making robots learn from people (apprenticeship learning), how to make robots learn through their own trial and error (reinforcement learning), and how to speed up skill acquisition through learning-to-learn (meta-learning). His robots have learned advanced helicopter aerobatics, knot-tying, basic assembly, organizing laundry, locomotion, and vision-based robotic manipulation. He has won numerous awards, including best paper awards at ICML, NIPS and ICRA, early career awards from NSF, Darpa, ONR, AFOSR, Sloan, TR35, IEEE, and the Presidential Early Career Award for Scientists and Engineers (PECASE). Pieter's work is frequently featured in the popular press, including New York Times, BBC, Bloomberg, Wall Street Journal, Wired, Forbes, Tech Review, NPR.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors