Timezone: »
Data exhibited with multiple modalities are ubiquitous in real-world clustering tasks. Most existing methods, however, pose a strong assumption that the pairing information for modalities is available for all instances. In this paper, we consider a more challenging task where each instance is represented in only one modality, which we call mixed-modal data. Without any extra pairing supervision across modalities, it is difficult to find a universal semantic space for all of them. To tackle this problem, we present an adversarial learning framework for clustering with mixed-modal data. Instead of transforming all the samples into a joint modality-independent space, our framework learns the mappings across individual modal spaces by virtue of cycle-consistency. Through these mappings, we could easily unify all the samples into a single modal space and perform the clustering. Evaluations on several real-world mixed-modal datasets could demonstrate the superiority of our proposed framework.
Author Information
Yangbangyan Jiang (Institute of Information Engineering, Chinese Academy of Sciences)
Qianqian Xu (Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences)
Zhiyong Yang (SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences; SCS, University of Chinese Academy of Sciences)
Xiaochun Cao (Institute of Information Engineering, Chinese Academy of Sciences)
Qingming Huang (University of Chinese Academy of Sciences)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: DM2C: Deep Mixed-Modal Clustering »
Wed. Dec 11th 06:45 -- 08:45 PM Room East Exhibition Hall B + C #63
More from the Same Authors
-
2022 Poster: Asymptotically Unbiased Instance-wise Regularized Partial AUC Optimization: Theory and Algorithm »
HuiYang Shao · Qianqian Xu · Zhiyong Yang · Shilong Bao · Qingming Huang -
2022 Poster: Exploring the Algorithm-Dependent Generalization of AUPRC Optimization with List Stability »
Peisong Wen · Qianqian Xu · Zhiyong Yang · Yuan He · Qingming Huang -
2022 Spotlight: OpenAUC: Towards AUC-Oriented Open-Set Recognition »
Zitai Wang · Qianqian Xu · Zhiyong Yang · Yuan He · Xiaochun Cao · Qingming Huang -
2022 Poster: OpenAUC: Towards AUC-Oriented Open-Set Recognition »
Zitai Wang · Qianqian Xu · Zhiyong Yang · Yuan He · Xiaochun Cao · Qingming Huang -
2022 Poster: OTKGE: Multi-modal Knowledge Graph Embeddings via Optimal Transport »
Zongsheng Cao · Qianqian Xu · Zhiyong Yang · Yuan He · Xiaochun Cao · Qingming Huang -
2022 Poster: The Minority Matters: A Diversity-Promoting Collaborative Metric Learning Algorithm »
Shilong Bao · Qianqian Xu · Zhiyong Yang · Yuan He · Xiaochun Cao · Qingming Huang -
2021 Poster: When False Positive is Intolerant: End-to-End Optimization with Low FPR for Multipartite Ranking »
Peisong Wen · Qianqian Xu · Zhiyong Yang · Yuan He · Qingming Huang -
2021 Poster: Diverse Message Passing for Attribute with Heterophily »
Liang Yang · Mengzhe Li · Liyang Liu · bingxin niu · Chuan Wang · Xiaochun Cao · Yuanfang Guo -
2020 Poster: Heuristic Domain Adaptation »
Shuhao Cui · Xuan Jin · Shuhui Wang · Yuan He · Qingming Huang -
2019 Poster: Generalized Block-Diagonal Structure Pursuit: Learning Soft Latent Task Assignment against Negative Transfer »
Zhiyong Yang · Qianqian Xu · Yangbangyan Jiang · Xiaochun Cao · Qingming Huang -
2019 Poster: iSplit LBI: Individualized Partial Ranking with Ties via Split LBI »
Qianqian Xu · Xinwei Sun · Zhiyong Yang · Xiaochun Cao · Qingming Huang · Yuan Yao -
2018 Poster: Deep Non-Blind Deconvolution via Generalized Low-Rank Approximation »
Wenqi Ren · Jiawei Zhang · Lin Ma · Jinshan Pan · Xiaochun Cao · Wangmeng Zuo · Wei Liu · Ming-Hsuan Yang