Timezone: »
Spotlight
Time/Accuracy Tradeoffs for Learning a ReLU with respect to Gaussian Marginals
Surbhi Goel · Sushrut Karmalkar · Adam Klivans
We consider the problem of computing the best-fitting ReLU with
respect to square-loss on a training set when the examples have been
drawn according to a spherical Gaussian distribution (the labels can
be arbitrary). Let $\opt < 1$ be the population loss of the
best-fitting ReLU. We prove:
\begin{itemize}
\item Finding a ReLU with square-loss $\opt + \epsilon$ is as
hard as the problem of learning sparse parities with noise, widely thought
to be computationally intractable. This is the first hardness
result for learning a ReLU with respect to Gaussian marginals, and
our results imply --{\em unconditionally}-- that gradient descent cannot
converge to the global minimum in polynomial time.
\item There exists an efficient approximation algorithm for finding the
best-fitting ReLU that achieves error $O(\opt^{2/3})$. The
algorithm uses a novel reduction to noisy halfspace learning with
respect to $0/1$ loss.
\end{itemize}
Prior work due to Soltanolkotabi \cite{soltanolkotabi2017learning} showed that gradient descent {\em can} find the best-fitting ReLU with respect to Gaussian marginals, if the training set is {\em exactly} labeled by a ReLU.
Author Information
Surbhi Goel (The University of Texas at Austin)
Sushrut Karmalkar (The University of Texas at Austin)
Adam Klivans (UT Austin)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Poster: Time/Accuracy Tradeoffs for Learning a ReLU with respect to Gaussian Marginals »
Thu. Dec 12th 01:00 -- 03:00 AM Room East Exhibition Hall B + C #235
More from the Same Authors
-
2022 : HotProtein: A Novel Framework for Protein Thermostability Prediction and Editing »
Tianlong Chen · Chengyue Gong · Daniel Diaz · Xuxi Chen · Jordan Wells · Qiang Liu · Zhangyang Wang · Andrew Ellington · Alex Dimakis · Adam Klivans -
2022 Panel: Panel 3C-1: The Franz-Parisi Criterion… & List-Decodable Sparse Mean… »
Afonso S Bandeira · Sushrut Karmalkar -
2022 Poster: Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit »
Boaz Barak · Benjamin Edelman · Surbhi Goel · Sham Kakade · Eran Malach · Cyril Zhang -
2022 Poster: Recurrent Convolutional Neural Networks Learn Succinct Learning Algorithms »
Surbhi Goel · Sham Kakade · Adam Kalai · Cyril Zhang -
2022 Poster: List-Decodable Sparse Mean Estimation via Difference-of-Pairs Filtering »
Ilias Diakonikolas · Daniel Kane · Sushrut Karmalkar · Ankit Pensia · Thanasis Pittas -
2022 Poster: Hardness of Noise-Free Learning for Two-Hidden-Layer Neural Networks »
Sitan Chen · Aravind Gollakota · Adam Klivans · Raghu Meka -
2021 Poster: Efficiently Learning One Hidden Layer ReLU Networks From Queries »
Sitan Chen · Adam Klivans · Raghu Meka -
2021 Poster: Gone Fishing: Neural Active Learning with Fisher Embeddings »
Jordan Ash · Surbhi Goel · Akshay Krishnamurthy · Sham Kakade -
2020 Poster: From Boltzmann Machines to Neural Networks and Back Again »
Surbhi Goel · Adam Klivans · Frederic Koehler -
2020 Poster: Statistical-Query Lower Bounds via Functional Gradients »
Surbhi Goel · Aravind Gollakota · Adam Klivans -
2019 : Poster Session »
Jonathan Scarlett · Piotr Indyk · Ali Vakilian · Adrian Weller · Partha P Mitra · Benjamin Aubin · Bruno Loureiro · Florent Krzakala · Lenka Zdeborová · Kristina Monakhova · Joshua Yurtsever · Laura Waller · Hendrik Sommerhoff · Michael Moeller · Rushil Anirudh · Shuang Qiu · Xiaohan Wei · Zhuoran Yang · Jayaraman Thiagarajan · Salman Asif · Michael Gillhofer · Johannes Brandstetter · Sepp Hochreiter · Felix Petersen · Dhruv Patel · Assad Oberai · Akshay Kamath · Sushrut Karmalkar · Eric Price · Ali Ahmed · Zahra Kadkhodaie · Sreyas Mohan · Eero Simoncelli · Carlos Fernandez-Granda · Oscar Leong · Wesam Sakla · Rebecca Willett · Stephan Hoyer · Jascha Sohl-Dickstein · Sam Greydanus · Gauri Jagatap · Chinmay Hegde · Michael Kellman · Jonathan Tamir · Nouamane Laanait · Ousmane Dia · Mirco Ravanelli · Jonathan Binas · Negar Rostamzadeh · Shirin Jalali · Tiantian Fang · Alex Schwing · Sébastien Lachapelle · Philippe Brouillard · Tristan Deleu · Simon Lacoste-Julien · Stella Yu · Arya Mazumdar · Ankit Singh Rawat · Yue Zhao · Jianshu Chen · Xiaoyang Li · Hubert Ramsauer · Gabrio Rizzuti · Nikolaos Mitsakos · Dingzhou Cao · Thomas Strohmer · Yang Li · Pei Peng · Gregory Ongie -
2019 Poster: Outlier-Robust High-Dimensional Sparse Estimation via Iterative Filtering »
Ilias Diakonikolas · Daniel Kane · Sushrut Karmalkar · Eric Price · Alistair Stewart -
2019 Poster: List-decodable Linear Regression »
Sushrut Karmalkar · Adam Klivans · Pravesh Kothari -
2019 Spotlight: List-decodable Linear Regression »
Sushrut Karmalkar · Adam Klivans · Pravesh Kothari -
2017 Poster: Eigenvalue Decay Implies Polynomial-Time Learnability for Neural Networks »
Surbhi Goel · Adam Klivans -
2014 Poster: Sparse Polynomial Learning and Graph Sketching »
Murat Kocaoglu · Karthikeyan Shanmugam · Alex Dimakis · Adam Klivans -
2014 Oral: Sparse Polynomial Learning and Graph Sketching »
Murat Kocaoglu · Karthikeyan Shanmugam · Alex Dimakis · Adam Klivans