Timezone: »
Attempts at understanding deep learning have come from different disciplines, namely physics, statistics, information theory, and machine learning. These lines of investigation have very different modeling assumptions and techniques; it is unclear how their results may be reconciled together. This workshop builds upon the observation that Information Geometry has strong overlaps with these directions and may serve as a means to develop a holistic understanding of deep learning. The workshop program is designed to answer two specific questions. The first question is: how do geometry of the hypothesis class and information-theoretic properties of optimization inform generalization. Good datasets have been a key propeller of the empirical success of deep networks. Our theoretical understanding of data is however poor. The second question the workshop will focus on is: how can we model data and use the understanding of data to improve optimization/generalization in the low-data regime.
Gather.Town link: [ protected link dropped ]
Sat 9:20 a.m. - 9:30 a.m.
|
Opening Remarks
|
🔗 |
Sat 9:30 a.m. - 10:15 a.m.
|
Keynote 1: Ke Sun
(
Keynote
)
SlidesLive Video » |
Ke SUN 🔗 |
Sat 10:15 a.m. - 10:30 a.m.
|
Contributed Talk 1: The Volume of Non-Restricted Boltzmann Machines and Their Double Descent Model Complexity
(
Contributed Talk
)
SlidesLive Video » Prasad Cheema, Mahito Sugiyama |
Prasad Cheema · Mahito Sugiyama 🔗 |
Sat 10:30 a.m. - 10:45 a.m.
|
Contributed Talk 2: From em-Projections to Variational Auto-Encoder
(
Contributed Talk
)
SlidesLive Video » Tian Han, Jun Zhang, Ying Nian Wu |
Tian Han 🔗 |
Sat 10:45 a.m. - 11:30 a.m.
|
Keynote 2: Marco Gori
(
Keynote
)
SlidesLive Video » |
Marco Gori 🔗 |
Sat 12:30 p.m. - 1:15 p.m.
|
Keynote 3: Shun-ichi Amari
(
Keynote
)
SlidesLive Video » |
Shun-ichi Amari 🔗 |
Sat 1:15 p.m. - 2:00 p.m.
|
Keynote 4: Alexander Rakhlin
(
Keynote
)
|
Alexander Rakhlin 🔗 |
Sat 2:15 p.m. - 2:30 p.m.
|
Contributed Talk 3: An Information-Geometric Distance on the Space of Tasks
(
Contributed Talk
)
SlidesLive Video » Yansong Gao, Pratik Chaudhari |
Yansong Gao 🔗 |
Sat 2:30 p.m. - 3:15 p.m.
|
Keynote 5: Gintare Karolina Dziugaite
(
Keynote
)
SlidesLive Video » |
Gintare Karolina Dziugaite 🔗 |
Sat 3:15 p.m. - 4:00 p.m.
|
Keynote 6: Guido Montufar
(
Keynote
)
|
Guido Montufar 🔗 |
Sat 4:00 p.m. - 4:15 p.m.
|
Contributed Talk 4: Annealed Importance Sampling with q-Paths
(
Contributed Talk
)
SlidesLive Video » Rob Brekelmans, Vaden Masrani, Thang D Bui, Frank Wood, Aram Galstyan, Greg Ver Steeg, Frank Nielsen |
Rob Brekelmans 🔗 |
Sat 4:30 p.m. - 5:00 p.m.
|
Panel Discussion and Closing Remarks
|
🔗 |
Sat 5:00 p.m. - 6:30 p.m.
|
Poster Session (Gather Town) ( Poster Session ) link » | 🔗 |
Author Information
Pratik Chaudhari (University of Pennsylvania)
Alexander Alemi (Google)
Varun Jog (University of Wisconsin-Madison)
Dhagash Mehta (The Vanguard Group)
Frank Nielsen (Sony CS Labs Inc.)
Stefano Soatto (UCLA)
Greg Ver Steeg (USC Information Sciences Institute)
More from the Same Authors
-
2021 : Towards Modeling and Resolving Singular Parameter Spaces using Stratifolds »
Pascal Esser · Frank Nielsen -
2021 : Towards Modeling and Resolving Singular Parameter Spaces using Stratifolds »
Pascal Esser · Frank Nielsen -
2021 : Model Zoo: A Growing Brain That Learns Continually »
Rahul Ramesh · Pratik Chaudhari -
2021 : PAC^m-Bayes: Narrowing the Empirical Risk Gap in the Misspecified Bayesian Regime »
Joshua Dillon · Warren Morningstar · Alexander Alemi -
2022 : Trajectory ensembling for fine tuning - performance gains without modifying training »
Louise Anderson-Conway · Vighnesh Birodkar · Saurabh Singh · Hossein Mobahi · Alexander Alemi -
2022 : Federated Progressive Sparsification (Purge-Merge-Tune)+ »
Dimitris Stripelis · Umang Gupta · Greg Ver Steeg · Jose-Luis Ambite -
2022 : The Value of Out-of-distribution Data »
Ashwin De Silva · Rahul Ramesh · Carey E Priebe · Pratik Chaudhari · Joshua T Vogelstein -
2022 : Bounding the Effects of Continuous Treatments for Hidden Confounders »
Myrl Marmarelis · Greg Ver Steeg · Neda Jahanshad · Aram Galstyan -
2022 : A Radiogenomics-based Coordinate System to Quantify the Heterogeneity of Glioblastoma »
Fanyang Yu · Anahita Fathi Kazerooni · Pratik Chaudhari · Christos Davatzikos -
2023 Poster: Budgeting Counterfactual for Offline RL »
Yao Liu · Pratik Chaudhari · Rasool Fakoor -
2021 : PAC^m-Bayes: Narrowing the Empirical Risk Gap in the Misspecified Bayesian Regime »
Alexander Alemi -
2021 Poster: Continuous Doubly Constrained Batch Reinforcement Learning »
Rasool Fakoor · Jonas Mueller · Kavosh Asadi · Pratik Chaudhari · Alexander Smola -
2021 Poster: Information-theoretic generalization bounds for black-box learning algorithms »
Hrayr Harutyunyan · Maxim Raginsky · Greg Ver Steeg · Aram Galstyan -
2021 Poster: Does Knowledge Distillation Really Work? »
Samuel Stanton · Pavel Izmailov · Polina Kirichenko · Alexander Alemi · Andrew Wilson -
2021 Poster: Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling »
Greg Ver Steeg · Aram Galstyan -
2021 Poster: Implicit SVD for Graph Representation Learning »
Sami Abu-El-Haija · Hesham Mostafa · Marcel Nassar · Valentino Crespi · Greg Ver Steeg · Aram Galstyan -
2020 Poster: Predicting Training Time Without Training »
Luca Zancato · Alessandro Achille · Avinash Ravichandran · Rahul Bhotika · Stefano Soatto -
2020 Poster: Geo-PIFu: Geometry and Pixel Aligned Implicit Functions for Single-view Human Reconstruction »
Tong He · John Collomosse · Hailin Jin · Stefano Soatto -
2020 Poster: Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation »
Rasool Fakoor · Jonas Mueller · Nick Erickson · Pratik Chaudhari · Alexander Smola -
2020 Poster: Targeted Adversarial Perturbations for Monocular Depth Prediction »
Alex Wong · Safa Cicek · Stefano Soatto -
2019 : Poster Session »
Gergely Flamich · Shashanka Ubaru · Charles Zheng · Josip Djolonga · Kristoffer Wickstrøm · Diego Granziol · Konstantinos Pitas · Jun Li · Robert Williamson · Sangwoong Yoon · Kwot Sin Lee · Julian Zilly · Linda Petrini · Ian Fischer · Zhe Dong · Alexander Alemi · Bao-Ngoc Nguyen · Rob Brekelmans · Tailin Wu · Aditya Mahajan · Alexander Li · Kirankumar Shiragur · Yair Carmon · Linara Adilova · SHIYU LIU · Bang An · Sanjeeb Dash · Oktay Gunluk · Arya Mazumdar · Mehul Motani · Julia Rosenzweig · Michael Kamp · Marton Havasi · Leighton P Barnes · Zhengqing Zhou · Yi Hao · Dylan Foster · Yuval Benjamini · Nati Srebro · Michael Tschannen · Paul Rubenstein · Sylvain Gelly · John Duchi · Aaron Sidford · Robin Ru · Stefan Zohren · Murtaza Dalal · Michael A Osborne · Stephen J Roberts · Moses Charikar · Jayakumar Subramanian · Xiaodi Fan · Max Schwarzer · Nicholas Roberts · Simon Lacoste-Julien · Vinay Prabhu · Aram Galstyan · Greg Ver Steeg · Lalitha Sankar · Yung-Kyun Noh · Gautam Dasarathy · Frank Park · Ngai-Man (Man) Cheung · Ngoc-Trung Tran · Linxiao Yang · Ben Poole · Andrea Censi · Tristan Sylvain · R Devon Hjelm · Bangjie Liu · Jose Gallego-Posada · Tyler Sypherd · Kai Yang · Jan Nikolas Morshuis -
2019 : Invited Talk: Alexander A Alemi »
Alexander Alemi -
2019 : Invited Talk: Varun Jog »
Varun Jog -
2019 : Invited Talk: Stefano Soatto and Alessandro Achille »
Stefano Soatto · Alessandro Achille -
2019 Poster: Time Matters in Regularizing Deep Networks: Weight Decay and Data Augmentation Affect Early Learning Dynamics, Matter Little Near Convergence »
Aditya Sharad Golatkar · Alessandro Achille · Stefano Soatto -
2019 Poster: Fast structure learning with modular regularization »
Greg Ver Steeg · Hrayr Harutyunyan · Daniel Moyer · Aram Galstyan -
2019 Spotlight: Fast structure learning with modular regularization »
Greg Ver Steeg · Hrayr Harutyunyan · Daniel Moyer · Aram Galstyan -
2019 Poster: Exact Rate-Distortion in Autoencoders via Echo Noise »
Rob Brekelmans · Daniel Moyer · Aram Galstyan · Greg Ver Steeg -
2018 Poster: Invariant Representations without Adversarial Training »
Daniel Moyer · Shuyang Gao · Rob Brekelmans · Aram Galstyan · Greg Ver Steeg -
2018 Poster: Watch Your Step: Learning Node Embeddings via Graph Attention »
Sami Abu-El-Haija · Bryan Perozzi · Rami Al-Rfou · Alexander Alemi -
2018 Poster: GILBO: One Metric to Measure Them All »
Alexander Alemi · Ian Fischer -
2018 Spotlight: GILBO: One Metric to Measure Them All »
Alexander Alemi · Ian Fischer -
2017 : Stefano Soatto »
Stefano Soatto -
2017 : Coffee break and Poster Session II »
Mohamed Kane · Albert Haque · Vagelis Papalexakis · John Guibas · Peter Li · Carlos Arias · Eric Nalisnick · Padhraic Smyth · Frank Rudzicz · Xia Zhu · Theodore Willke · Noemie Elhadad · Hans Raffauf · Harini Suresh · Paroma Varma · Yisong Yue · Ognjen (Oggi) Rudovic · Luca Foschini · Syed Rameel Ahmad · Hasham ul Haq · Valerio Maggio · Giuseppe Jurman · Sonali Parbhoo · Pouya Bashivan · Jyoti Islam · Mirco Musolesi · Chris Wu · Alexander Ratner · Jared Dunnmon · Cristóbal Esteban · Aram Galstyan · Greg Ver Steeg · Hrant Khachatrian · Marc Górriz · Mihaela van der Schaar · Anton Nemchenko · Manasi Patwardhan · Tanay Tandon -
2016 Poster: DeepMath - Deep Sequence Models for Premise Selection »
Geoffrey Irving · Christian Szegedy · Alexander Alemi · Niklas Een · Francois Chollet · Josef Urban -
2016 Poster: Variational Information Maximization for Feature Selection »
Shuyang Gao · Greg Ver Steeg · Aram Galstyan -
2016 Poster: Computing and maximizing influence in linear threshold and triggering models »
Justin Khim · Varun Jog · Po-Ling Loh -
2014 Poster: Discovering Structure in High-Dimensional Data Through Correlation Explanation »
Greg Ver Steeg · Aram Galstyan -
2012 Poster: Controlled Recognition Bounds for Visual Learning and Exploration »
Vasiliy Karasev · Chiuso Alessandro c/o Dip. I Informazione · Stefano Soatto -
2011 Poster: Multiple Instance Filtering »
Kamil A Wnuk · Stefano Soatto