Timezone: »
The financial services industry has unique needs for fairness when adopting artificial intelligence and machine learning (AI/ML). First and foremost, there are strong ethical reasons to ensure that models used for activities such as credit decisioning and lending are fair and unbiased, or that machine reliance does not cause humans to miss critical pieces of data. Then there are the regulatory requirements to actually prove that the models are unbiased and that they do not discriminate against certain groups.
Emerging techniques such as algorithmic credit scoring introduce new challenges. Traditionally financial institutions have relied on a consumer’s past credit performance and transaction data to make lending decisions. But, with the emergence of algorithmic credit scoring, lenders also use alternate data such as those gleaned from social media and this immediately raises questions around systemic biases inherent in models used to understand customer behavior.
We also need to play careful attention to ways in which AI can not only be de-biased, but also how it can play an active role in making financial services more accessible to those historically shut out due to prejudice and other social injustices.
The aim of this workshop is to bring together researchers from different disciplines to discuss fair AI in financial services. For the first time, four major banks have come together to organize this workshop along with researchers from two universities as well as SEC and FINRA (Financial Industry Regulatory Authority). Our confirmed invited speakers come with different backgrounds including AI, law and cultural anthropology, and we hope that this will offer an engaging forum with diversity of thought to discuss the fairness aspects of AI in financial services. We are also planning a panel discussion on systemic bias and its impact on financial outcomes of different customer segments, and how AI can help.
Fri 8:00 a.m. - 8:05 a.m.
|
Opening Remarks
(
Intro
)
|
Senthil Kumar 🔗 |
Fri 8:05 a.m. - 8:35 a.m.
|
Invited Talk : Modeling the Dynamics of Poverty
(
Keynote
)
|
Rediet Abebe 🔗 |
Fri 8:35 a.m. - 9:05 a.m.
|
Invited Talk 2: Unavoidable Tensions in Explaining Algorithmic Decisions
(
Keynote
)
SlidesLive Video » |
Solon Barocas 🔗 |
Fri 9:05 a.m. - 9:15 a.m.
|
Break
|
🔗 |
Fri 9:15 a.m. - 9:45 a.m.
|
Invited Talk 3: Stories of Invisibility: Re-thinking Human in the Loop Design
(
Keynote
)
SlidesLive Video » |
Madeleine Elish 🔗 |
Fri 9:45 a.m. - 10:15 a.m.
|
Invited Talk 4: Actionable Recourse in Machine Learning
(
Keynote
)
|
Berk Ustun 🔗 |
Fri 10:15 a.m. - 10:30 a.m.
|
Break
|
🔗 |
Fri 10:30 a.m. - 11:00 a.m.
|
Invited Talk 5: Navigating Value Trade-offs in ML for Consumer Finance - A Legal and Regulatory Perspective
(
Keynote
)
SlidesLive Video » |
Nikita Aggarwal 🔗 |
Fri 11:00 a.m. - 11:30 a.m.
|
Invited Talk 6: Reconciling Legal and Technical Approaches to Algorithmic Bias
(
Keynote
)
SlidesLive Video » |
Alice Xiang 🔗 |
Fri 11:30 a.m. - 12:30 p.m.
|
Lunch Break
|
🔗 |
Fri 12:30 p.m. - 1:15 p.m.
|
Panel Discussion: Building a Fair Future in Finance
(
Panel
)
|
Madeleine Elish · Alice Xiang · Ana-Andreea Stoica · Cat Posey 🔗 |
Fri 1:15 p.m. - 1:20 p.m.
|
Break
|
🔗 |
Fri 1:20 p.m. - 1:50 p.m.
|
Invited Talk 7:Fair Portfolio Design
(
Keynote
)
|
Michael Kearns 🔗 |
Fri 1:50 p.m. - 2:20 p.m.
|
Invited Talk 8: Fair AI in the securities industry, a review of methods and metrics
(
Keynote
)
|
Jonathan Bryant 🔗 |
Fri 2:20 p.m. - 2:50 p.m.
|
Invited Talk 9: Building Compliant Models: Fair Feature Selection with Multiobjective Monte Carlo Tree Search
(
Keynote
)
SlidesLive Video » |
Jiahao Chen 🔗 |
Fri 2:50 p.m. - 3:10 p.m.
|
Break
|
🔗 |
Fri 3:10 p.m. - 3:25 p.m.
|
Spotlight Talk 1: Quantifying risk-fairness trade-off in regression
(
Talk
)
SlidesLive Video » |
Nicolas Schreuder · Evgenii Chzhen 🔗 |
Fri 3:25 p.m. - 3:40 p.m.
|
Spotlight Talk 2: Black Loans Matter: Distributionally Robust Fairness for Fighting Subgroup Discrimination
(
Talk
)
SlidesLive Video » |
Mark Weber 🔗 |
Fri 3:40 p.m. - 3:55 p.m.
|
Spotlight Talk 3: An Experiment on Leveraging SHAP Values to Investigate Racial Bias
(
Talk
)
SlidesLive Video » |
Ramon Vilarino · Renato Vicente 🔗 |
Fri 3:55 p.m. - 4:10 p.m.
|
Spotlight Talk 4: Fairness, Welfare, and Equity in Personalized Pricing
(
Talk
)
SlidesLive Video » |
Nathan Kallus · Angela Zhou 🔗 |
Fri 4:10 p.m. - 4:25 p.m.
|
Spotlight Talk 5: Robust Welfare Guarantees for Decentralized Credit Organizations
(
Talk
)
SlidesLive Video » |
Rediet Abebe · Christian Ikeokwu · Samuel Taggart 🔗 |
Fri 4:25 p.m. - 4:40 p.m.
|
Spotlight Talk 6: Partially Aware: Some Challenges Around Uncertainty and Ambiguity in Fairness
(
Talk
)
SlidesLive Video » |
Francois Buet-Golfouse 🔗 |
Fri 4:40 p.m. - 4:55 p.m.
|
Spotlight Talk 7: Hidden Technical Debts for Fair Machine Learning in Financial Services
(
Talk
)
SlidesLive Video » |
Chong Huang · Arash Nourian · Kevin Griest 🔗 |
Fri 4:55 p.m. - 4:58 p.m.
|
Lightning Talk 1: Insights into Fairness through Trust: Multi-scale Trust Quantification for Financial Deep Learning
(
Talk
)
SlidesLive Video » |
Alexander Wong · Andrew Hryniowski · Xiao Yu Wang 🔗 |
Fri 4:58 p.m. - 5:01 p.m.
|
Lightning Talk 2: Pareto Robustness for Fairness Beyond Demographics
(
Talk
)
SlidesLive Video » |
Natalia Martinez · Martin Bertran · Afroditi Papadaki · Miguel Rodrigues · Guillermo Sapiro 🔗 |
Fri 5:01 p.m. - 5:04 p.m.
|
Lightning Talk 3: Developing a Philosophical Framework for Fair Machine Learning: The Case of Algorithmic Collusion and Market Fairness
(
Talk
)
SlidesLive Video » |
James Michelson 🔗 |
Fri 5:04 p.m. - 5:07 p.m.
|
Lightning Talk 4: Latent-CF: A Simple Baseline for Reverse Counterfactual Explanations
(
Talk
)
SlidesLive Video » |
C. Bayan Bruss · Rachana Balasubramanian · Brian Barr · Samuel Sharpe · Jason Wittenbach 🔗 |
Author Information
Senthil Kumar (Capital One)
Cynthia Rudin (Duke)
John Paisley (Columbia University)
Isabelle Moulinier (Capital One)
C. Bayan Bruss (Capital One)
Eren K. (BoA/Columbia University)
Susan Tibbs (FINRA)
Oluwatobi Olabiyi (Capital One)
Simona Gandrabur (Banque Nationale du Canada)
Svitlana Vyetrenko (J. P. Morgan, Artificial Intelligence Research)
Kevin Compher (U.S. Securities and Exchange Commission)
More from the Same Authors
-
2021 : Efficient Calibration of Multi-Agent Market Simulators from Time Series with Bayesian Optimization »
Yuanlu Bai · Svitlana Vyetrenko · Henry Lam · Tucker Balch -
2022 : SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training »
Gowthami Somepalli · Avi Schwarzschild · Micah Goldblum · C. Bayan Bruss · Tom Goldstein -
2022 : Transfer Learning with Deep Tabular Models »
Roman Levin · Valeriia Cherepanova · Avi Schwarzschild · Arpit Bansal · C. Bayan Bruss · Tom Goldstein · Andrew Wilson · Micah Goldblum -
2022 : A Synthetic Limit Order Book Dataset for Benchmarking Forecasting Algorithms under Distributional Shift »
Defu Cao · Yousef El-Laham · Loc Trinh · Svitlana Vyetrenko · Yan Liu -
2022 : Few-Shot Learnable Augmentation for Financial Time Series Prediction under Distribution Shifts »
Dat Huynh · Elizabeth Fons · Svitlana Vyetrenko -
2022 : Making the World More Equal, One Ride at a Time: Studying Public Transportation Initiatives Using Interpretable Causal Inference »
Gaurav Rajesh Parikh · Albert Sun · Jenny Huang · Lesia Semenova · Cynthia Rudin -
2022 : On Representation Learning Under Class Imbalance »
Ravid Shwartz-Ziv · Micah Goldblum · Yucen Li · C. Bayan Bruss · Andrew Gordon Wilson -
2023 Poster: Simplifying Neural Network Training Under Class Imbalance »
Ravid Shwartz-Ziv · Micah Goldblum · Yucen Li · C. Bayan Bruss · Andrew Wilson -
2023 Poster: This Looks Like Those: Illuminating Prototypical Concepts Using Multiple Visualizations »
Chiyu Ma · Brandon Zhao · Chaofan Chen · Cynthia Rudin -
2023 Poster: A Path to Simpler Models Starts With Noise »
Lesia Semenova · Harry Chen · Ronald Parr · Cynthia Rudin -
2023 Poster: The Rashomon Importance Distribution: Getting RID of Unstable, Single Model-based Variable Importance »
Jon Donnelly · Srikar Katta · Cynthia Rudin · Edward Browne -
2023 Poster: On the Constrained Time-Series Generation Problem »
Andrea Coletta · Sriram Gopalakrishnan · Daniel Borrajo · Svitlana Vyetrenko -
2023 Poster: Exploring and Interacting with the Set of Good Sparse Generalized Additive Models »
Zhi Chen · Chudi Zhong · Margo Seltzer · Cynthia Rudin -
2023 Poster: OKRidge: Scalable Optimal k-Sparse Ridge Regression for Learning Dynamical Systems »
Jiachang Liu · Sam Rosen · Chudi Zhong · Cynthia Rudin -
2023 Poster: A Performance-Driven Benchmark for Feature Selection in Tabular Deep Learning »
Valeriia Cherepanova · Gowthami Somepalli · Jonas Geiping · C. Bayan Bruss · Andrew Wilson · Tom Goldstein · Micah Goldblum -
2022 Workshop: Graph Learning for Industrial Applications: Finance, Crime Detection, Medicine and Social Media »
Manuela Veloso · John Dickerson · Senthil Kumar · Eren K. · Jian Tang · Jie Chen · Peter Henstock · Susan Tibbs · Ani Calinescu · Naftali Cohen · C. Bayan Bruss · Armineh Nourbakhsh -
2022 Panel: Panel 3A-2: Linear tree shap… & Exploring the Whole… »
peng yu · Cynthia Rudin -
2022 : Panel Discussion »
Cynthia Rudin · Dan Bohus · Brenna Argall · Alison Gopnik · Igor Mordatch · Samuel Kaski -
2022 : Transfer Learning with Deep Tabular Models »
Roman Levin · Valeriia Cherepanova · Avi Schwarzschild · Arpit Bansal · C. Bayan Bruss · Tom Goldstein · Andrew Wilson · Micah Goldblum -
2022 : Let’s Give Domain Experts a Choice by Creating Many Approximately-Optimal Machine Learning Models »
Cynthia Rudin -
2022 : HyperTime: Implicit Neural Representations for Time Series »
Elizabeth Fons · Alejandro Sztrajman · Yousef El-Laham · Alexandros Iosifidis · Svitlana Vyetrenko -
2022 Poster: Exploring the Whole Rashomon Set of Sparse Decision Trees »
Rui Xin · Chudi Zhong · Zhi Chen · Takuya Takagi · Margo Seltzer · Cynthia Rudin -
2022 Poster: Rethinking Nonlinear Instrumental Variable Models through Prediction Validity »
Chunxiao Li · Cynthia Rudin · Tyler H. McCormick -
2022 Poster: FasterRisk: Fast and Accurate Interpretable Risk Scores »
Jiachang Liu · Chudi Zhong · Boxuan Li · Margo Seltzer · Cynthia Rudin -
2021 : AME: Interpretable Almost Exact Matching for Causal Inference »
Haoning Jiang · Thomas Howell · Neha Gupta · Vittorio Orlandi · Sudeepa Roy · Marco Morucci · Harsh Parikh · Alexander Volfovsky · Cynthia Rudin -
2020 : Contributed Talk - Cryo-ZSSR: multiple-image super-resolution based on deep internal learning »
Qinwen Huang · Reed Chen · Cynthia Rudin -
2020 Workshop: Self-Supervised Learning -- Theory and Practice »
Pengtao Xie · Shanghang Zhang · Pulkit Agrawal · Ishan Misra · Cynthia Rudin · Abdelrahman Mohamed · Wenzhen Yuan · Barret Zoph · Laurens van der Maaten · Xingyi Yang · Eric Xing -
2020 : How should researchers engage with controversial applications of AI? »
Logan Koepke · CATHERINE ONEIL · Tawana Petty · Cynthia Rudin · Deborah Raji · Shawn Bushway -
2020 : Lightning Talk 4: Latent-CF: A Simple Baseline for Reverse Counterfactual Explanations »
C. Bayan Bruss · Rachana Balasubramanian · Brian Barr · Samuel Sharpe · Jason Wittenbach -
2019 : Closing remarks »
Senthil Kumar -
2019 : Poster Session »
Nathalie Baracaldo · Seth Neel · Tuyen Le · Dan Philps · Suheng Tao · Sotirios Chatzis · Toyo Suzumura · Wei Wang · WENHANG BAO · Solon Barocas · Manish Raghavan · Samuel Maina · Reginald Bryant · Kush Varshney · Skyler D. Speakman · Navdeep Gill · Nicholas Schmidt · Kevin Compher · Naveen Sundar Govindarajulu · Vivek Sharma · Praneeth Vepakomma · Tristan Swedish · Jayashree Kalpathy-Cramer · Ramesh Raskar · Shihao Zheng · Mykola Pechenizkiy · Marco Schreyer · Li Ling · Chirag Nagpal · Robert Tillman · Manuela Veloso · Hanjie Chen · Xintong Wang · Michael Wellman · Matthew van Adelsberg · Ben Wood · Hans Buehler · Mahmoud Mahfouz · Antonios Alexos · Megan Shearer · Antigoni Polychroniadou · Lucia Larise Stavarache · Dmitry Efimov · Johnston P Hall · Yukun Zhang · Emily Diana · Sumitra Ganesh · Vineeth Ravi · · Swetasudha Panda · Xavier Renard · Matthew Jagielski · Yonadav Shavit · Joshua Williams · Haoran Wei · Shuang (Sophie) Zhai · Xinyi Li · Hongda Shen · Daiki Matsunaga · Jaesik Choi · Alexis Laignelet · Batuhan Guler · Jacobo Roa Vicens · Ajit Desai · Jonathan Aigrain · Robert Samoilescu -
2019 Workshop: Robust AI in Financial Services: Data, Fairness, Explainability, Trustworthiness, and Privacy »
Alina Oprea · Avigdor Gal · Eren K. · Isabelle Moulinier · Jiahao Chen · Manuela Veloso · Senthil Kumar · Tanveer Faruquie -
2019 : Opening Remarks »
Jiahao Chen · Manuela Veloso · Senthil Kumar · Isabelle Moulinier · Avigdor Gal · Alina Oprea · Tanveer Faruquie · Eren K. -
2019 Poster: This Looks Like That: Deep Learning for Interpretable Image Recognition »
Chaofan Chen · Oscar Li · Daniel Tao · Alina Barnett · Cynthia Rudin · Jonathan K Su -
2019 Spotlight: This Looks Like That: Deep Learning for Interpretable Image Recognition »
Chaofan Chen · Oscar Li · Daniel Tao · Alina Barnett · Cynthia Rudin · Jonathan K Su -
2019 Poster: Optimal Sparse Decision Trees »
Xiyang Hu · Cynthia Rudin · Margo Seltzer -
2019 Spotlight: Optimal Sparse Decision Trees »
Xiyang Hu · Cynthia Rudin · Margo Seltzer -
2019 Poster: A state-space model for inferring effective connectivity of latent neural dynamics from simultaneous EEG/fMRI »
Tao Tu · John Paisley · Stefan Haufe · Paul Sajda -
2019 Poster: Accurate Uncertainty Estimation and Decomposition in Ensemble Learning »
Jeremiah Liu · John Paisley · Marianthi-Anna Kioumourtzoglou · Brent Coull -
2018 : Invited Talk 6: Is it possible to have interpretable models for AI in Finance? »
Cynthia Rudin -
2018 : Poster Session 1 (note there are numerous missing names here, all papers appear in all poster sessions) »
Akhilesh Gotmare · Kenneth Holstein · Jan Brabec · Michal Uricar · Kaleigh Clary · Cynthia Rudin · Sam Witty · Andrew Ross · Shayne O'Brien · Babak Esmaeili · Jessica Forde · Massimo Caccia · Ali Emami · Scott Jordan · Bronwyn Woods · D. Sculley · Rebekah Overdorf · Nicolas Le Roux · Peter Henderson · Brandon Yang · Tzu-Yu Liu · David Jensen · Niccolo Dalmasso · Weitang Liu · Paul Marc TRICHELAIR · Jun Ki Lee · Akanksha Atrey · Matt Groh · Yotam Hechtlinger · Emma Tosch -
2018 : Opening Remarks »
Manuela Veloso · Isabelle Moulinier -
2018 Workshop: Challenges and Opportunities for AI in Financial Services: the Impact of Fairness, Explainability, Accuracy, and Privacy »
Manuela Veloso · Nathan Kallus · Sameena Shah · Senthil Kumar · Isabelle Moulinier · Jiahao Chen · John Paisley -
2017 Poster: Variational Inference via $\chi$ Upper Bound Minimization »
Adji Bousso Dieng · Dustin Tran · Rajesh Ranganath · John Paisley · David Blei