`

Timezone: »

 
Workshop
Interpretable Inductive Biases and Physically Structured Learning
Michael Lutter · Alexander Terenin · Shirley Ho · Lei Wang

Sat Dec 12 06:30 AM -- 02:30 PM (PST) @ None
Event URL: https://inductive-biases.github.io/ »

Over the last decade, deep networks have propelled machine learning to accomplish tasks previously considered far out of reach, human-level performance in image classification and game-playing. However, research has also shown that the deep networks are often brittle to distributional shifts in data: it has been shown that human-imperceptible changes can lead to absurd predictions. In many application areas, including physics, robotics, social sciences and life sciences, this motivates the need for robustness and interpretability, so that deep networks can be trusted in practical applications. Interpretable and robust models can be constructed by incorporating prior knowledge within the model or learning process as an inductive bias, thereby regularizing the model, avoiding overfitting, and making the model easier to understand for scientists who are non-machine-learning experts. Already in the last few years researchers from different fields have proposed various combinations of domain knowledge and machine learning and successfully applied these techniques to various applications.

Author Information

Michael Lutter (TU Darmstadt)
Alexander Terenin (Imperial College London)
Shirley Ho (Flatiron institute/ New York University/ Carnegie Mellon)

Shirley Ho is a group leader and acting director at Flatiron Institute at Simons foundation, a research professor of physics and an affiliated faculty at Center for Data Science at NYU. Ho also holds associate (adjunct) professorship at Carnegie Mellon University and visiting appointment at Princeton University. She was a senior scientist at Berkeley National Lab from 2016-2018 and a Cooper-Siegel Development chair professor at Carnegie Mellon University before that. Ho was a Seaborg and Chamberlain Fellow from 2008-2011 at Berkeley Lab, after receiving her PhD in Astrophysics from Princeton University in 2008 under supervision of David Spergel. Ho graduated summa cum laude with a B.A. in Physics and a B.A. in Computer Science from UC Berkeley. A cited expert in cosmology, machine learning applications in astrophysics and data science,her interests are using deep learning accelerated simulations to understand the Universe, and other astrophysical phenomena. She tries her best to balance her love for the Universe, the machine and life especially during these crazy times.

Lei Wang (IOP, CAS)

More from the Same Authors