Timezone: »
This workshop is designed to bring together trainees and experts in machine learning with those in the very forefront of biological research today for this purpose. Our full-day workshop will advance the joint project of the CS and biology communities with the goal of "Learning Meaningful Representations of Life" (LMRL), emphasizing interpretable representation learning of structure and principle. As last year, the workshop will be oriented around four layers of biological abstraction: molecule, cell, synthetic biology, and phenotypes.
Mapping structural molecular detail to organismal phenotype and function; predicting emergent effects of human genetic variation; and designing novel interventions including prevention, diagnostics, therapeutics, and the development of new synthetic biotechnologies for causal investigations are just some of the challenges that hinge on appropriate formal structures to make them accessible to the broadest possible community of computer scientists, statisticians, and their tools.
Fri 12:00 a.m. - 11:59 a.m.
|
Meet in Gather.town ( All-day event ) link » | 🔗 |
Fri 12:00 a.m. - 11:59 p.m.
|
Join the Discussion in Slack ( All-day event ) link » | 🔗 |
Fri 5:00 a.m. - 5:24 a.m.
|
Hilary Finucane
(
Pre-Recorded Talk
)
|
Hilary Finucane 🔗 |
Fri 5:25 a.m. - 5:40 a.m.
|
Live Discussion with Jacob Ulirsch (Finucane Lab)
(
Post-talk Q&A with Jacob Ulirsch in Person
)
|
🔗 |
Fri 5:40 a.m. - 6:20 a.m.
|
Daniela Witten
(
Pre-Recorded Talk
)
SlidesLive Video » |
Daniela M Witten 🔗 |
Fri 6:20 a.m. - 7:00 a.m.
|
Poster Session I - All Posters
(
Poster Session
)
|
🔗 |
Fri 7:00 a.m. - 7:15 a.m.
|
Timothy Springer ( Opening Remarks: Timothy Springer (Prerecorded) ) link » | 🔗 |
Fri 7:15 a.m. - 8:00 a.m.
|
Cell Panel
(
Cell Panel: Live with Mor Nitzan, Raveh, Keren and Zeevi
)
|
🔗 |
Fri 8:00 a.m. - 8:30 a.m.
|
Christina Leslie
(
Opening Remarks: Live with Christina Leslie in Person
)
|
Christina Leslie 🔗 |
Fri 8:00 a.m. - 8:22 a.m.
|
David Ryan Koes
(
Molecule Talk: Pre-Recorded
)
SlidesLive Video » |
David Koes 🔗 |
Fri 8:00 a.m. - 8:27 a.m.
|
Viviana Gradinaru
(
Synth Talk: Pre-Recorded
)
SlidesLive Video » |
Viviana Gradinaru 🔗 |
Fri 8:00 a.m. - 8:37 a.m.
|
Akiko Iwasaki ( Phenotype Talk: Pre-Recorded ) link » | Akiko Iwasaki 🔗 |
Fri 8:00 a.m. - 8:21 a.m.
|
Barak Raveh
(
Cell Talk: Pre-Recorded
)
SlidesLive Video » |
Barak Raveh 🔗 |
Fri 8:21 a.m. - 8:42 a.m.
|
Leeat Keren
(
Cell Talk: Pre-Recorded
)
SlidesLive Video » |
Leeat Keren 🔗 |
Fri 8:22 a.m. - 8:44 a.m.
|
Cecilia Clementi
(
Molecule Talk: Pre-Recorded with Cecilia Clementi Live in Person
)
SlidesLive Video » |
Cecilia Clementi 🔗 |
Fri 8:30 a.m. - 9:09 a.m.
|
Tamara Broderick
(
Recorded Talk with Tamara Broderick Live in Person
)
SlidesLive Video » |
Tamara Broderick 🔗 |
Fri 8:30 a.m. - 9:10 a.m.
|
Jose Miguel Hernandez Lobato ( Synth Talk: Pre-Recorded with Hernandez Lobato Live in Person ) link » | José Miguel Hernández-Lobato 🔗 |
Fri 8:37 a.m. - 9:18 a.m.
|
Eran Segal ( Phenotype Talk: Pre-Recorded ) link » | Eran Segal 🔗 |
Fri 8:42 a.m. - 9:03 a.m.
|
David Zeevi
(
Cell Talk: Pre-Recorded
)
SlidesLive Video » |
David Zeevi 🔗 |
Fri 8:44 a.m. - 9:05 a.m.
|
Pedro Beltrao
(
Molecule Talk: Pre-Recorded
)
SlidesLive Video » |
Pedro Beltrao 🔗 |
Fri 9:04 a.m. - 9:24 a.m.
|
Jesse Bloom
(
Cell Talk: Pre-Recorded
)
SlidesLive Video » |
Jesse Bloom 🔗 |
Fri 9:09 a.m. - 9:20 a.m.
|
Tamara Broderick
(
Discussion with Tamara Broderick Live in Person
)
|
🔗 |
Fri 9:10 a.m. - 9:20 a.m.
|
Hattie Chung
(
Synth Talk: Pre-Recorded
)
SlidesLive Video » |
Hattie Chung 🔗 |
Fri 9:18 a.m. - 10:00 a.m.
|
Harlan Krumholz
(
Phenotype Talk: Pre-Recorded
)
SlidesLive Video » |
Harlan Krumholz 🔗 |
Fri 9:20 a.m. - 10:00 a.m.
|
Chang Liu
(
Synth Talk: Live Talk with Chang Liu in Person
)
|
Chang Liu 🔗 |
Fri 9:25 a.m. - 10:00 a.m.
|
Geoffrey Schiebinger
(
Cell Talk: Pre-Recorded
)
SlidesLive Video » |
Geoffrey Schiebinger 🔗 |
Fri 9:25 a.m. - 10:00 a.m.
|
Christine Peter
(
Molecule Talk: Recorded talk with Christine Peter Live in Person
)
SlidesLive Video » |
Christine Peter 🔗 |
Fri 9:34 a.m. - 10:00 a.m.
|
John Chodera
(
Molecule Talk: Pre-Recorded with John Chodera Live in Person
)
SlidesLive Video » |
John Chodera 🔗 |
Fri 10:00 a.m. - 10:35 a.m.
|
Eli Weinstein
(
Synth Talk: Recorded Talk with Eli Weinstein Live in Person
)
SlidesLive Video » |
Eli Weinstein 🔗 |
Fri 10:00 a.m. - 10:06 a.m.
|
Hirunima Jayasekara
(
Phenotype Talk: Pre-Recorded
)
SlidesLive Video » |
Hirunima Jayasekara 🔗 |
Fri 10:00 a.m. - 11:00 a.m.
|
Phenotype Panel
(
Phenotype Panel: Live with Iwasaki, Segal and Krumholz
)
|
🔗 |
Fri 10:00 a.m. - 10:40 a.m.
|
Samantha Riesenfeld
(
Live Talk with Samantha Riesenfeld in Person
)
|
Samantha Riesenfeld 🔗 |
Fri 10:06 a.m. - 10:32 a.m.
|
Caroline Weis
(
Phenotype Talk: Pre-Recorded with Caroline Weis Live in Person
)
SlidesLive Video » |
Caroline Weis 🔗 |
Fri 10:10 a.m. - 10:10 a.m.
|
Maria Littmann
(
Molecule Talk: Recorded talk with Maria Littman Live in Person
)
SlidesLive Video » |
Maria Littmann 🔗 |
Fri 10:15 a.m. - 10:30 a.m.
|
Martin Voegele
(
Molecule Talk: Pre-Recorded with Martin Voegele Live in Person
)
SlidesLive Video » |
Martin Voegele 🔗 |
Fri 10:30 a.m. - 10:42 a.m.
|
James Morton
(
Molecule Talk: Pre-Recorded
)
SlidesLive Video » |
James Morton 🔗 |
Fri 10:32 a.m. - 10:36 a.m.
|
Manik Kuchroo
(
Phenotype Talk: Pre-Recorded
)
SlidesLive Video » |
Manik Kuchroo 🔗 |
Fri 10:35 a.m. - 11:00 a.m.
|
Surojit Biswas
(
Synth Talk: Pre-Recorded with Surojit Biswas Live in Person
)
SlidesLive Video » |
Surojit Biswas · Surge Biswas 🔗 |
Fri 10:36 a.m. - 10:55 a.m.
|
Claus Hélix-Nielsen
(
Synth Talk: Live Talk with Claus Hélix-Nielsen in Person
)
|
🔗 |
Fri 10:40 a.m. - 11:00 a.m.
|
Juan Caicedo and Shantanu Singh
(
Cell Talk: Live Q&A with Caicedo and Singh
)
link »
SlidesLive Video » |
Shantanu Singh · Juan Caicedo 🔗 |
Fri 10:42 a.m. - 10:54 a.m.
|
Max Shen
(
Molecule Talk: Pre-Recorded
)
SlidesLive Video » |
Max Shen 🔗 |
Fri 10:54 a.m. - 11:04 a.m.
|
Eli Draizen
(
Molecule Talk: Pre-Recorded
)
SlidesLive Video » |
Eli Draizen 🔗 |
Fri 11:00 a.m. - 12:00 p.m.
|
David Baker
(
Live Talk with David Baker in Person
)
|
David Baker 🔗 |
Fri 12:10 p.m. - 12:45 p.m.
|
Pamela Silver and Debora Marks
(
Live in Conversation with Pamela Silver and Debora Marks
)
|
🔗 |
Fri 12:30 p.m. - 1:15 p.m.
|
Jennifer Listgarten
(
Live Talk with Jennifer Listgarten in Person
)
|
Jennifer Listgarten 🔗 |
Fri 1:20 p.m. - 2:00 p.m.
|
Sri Kosuri ( Synth Talk: Pre-Recorded ) link » | 🔗 |
Fri 1:45 p.m. - 2:00 p.m.
|
Sri Kosuri
(
Discussion with Sri Kosuri Live in Person
)
|
🔗 |
Fri 2:00 p.m. - 3:00 p.m.
|
Poster Session II - All Posters
(
Poster Session
)
|
🔗 |
Author Information
Elizabeth Wood (Broad Institute)
Elizabeth Wood co-founded and co-runs JURA Bio, Inc., an early-stage therapeutics start up focusing on developing and delivering cell-based therapies for the treatment of autoimmune and immune-related neurodegenerative disease. Before founding JURA, Wood was a post-doc in the lab of Adam Cohen at Harvard, after completing her PhD studies with Angela Belcher and Markus Buehler at MIT, and Claus Helix-Neilsen at The Technical University of Denmark. She has also worked at the University of Copenhagen’s Biocenter with Kresten Lindorff-Larsen, integrating computational methods with experimental studies to understand how the ability of proteins to change their shape help modulate their function. Elizabeth Wood is a visiting scientist at the Broad Institute, where she serves on the steering committee of the Machine Inference Algorithm’s Initiative.
Debora Marks
Ray Jones (Broad Institute)
Adji Bousso Dieng (Columbia University)
Alan Aspuru-Guzik (University of Toronto)
Anshul Kundaje (Stanford University)
Barbara Engelhardt (Princeton University)
Barbara E. Engelhardt is an associate professor in the Princeton Computer Science Department, on leave in 2019-2020 working as a principal scientist at Genomics Plc. Previously, she was an assistant professor at Duke University in Biostatistics and Bioinformatics and Statistical Sciences. She graduated from Stanford University and received her Ph.D. from the University of California, Berkeley, advised by Professor Michael Jordan. She did postdoctoral research at the University of Chicago, working with Professor Matthew Stephens. Interspersed among her academic experiences, she spent two years working at the Jet Propulsion Laboratory, a summer at Google Research, and a year at 23andMe, a DNA ancestry service. Professor Engelhardt received an NSF Graduate Research Fellowship, the Google Anita Borg Memorial Scholarship, and the Walter M. Fitch Prize from the Society for Molecular Biology and Evolution. As a faculty member, she received the NIH NHGRI K99/R00 Pathway to Independence Award, a Sloan Faculty Fellowship, and an NSF CAREER Award. Professor Engelhardt’s research interests involve developing statistical models and methods for the analysis of high-dimensional biomedical data, with a goal of understanding the underlying biological mechanisms and dynamics of complex phenotypes and human disease.
Chang Liu (UC Irvine)
Professor Liu’s research is in the fields of synthetic biology, chemical biology, and directed evolution. He is particularly interested in engineering specialized genetic systems for rapid mutation and evolution of genes in vivo. These systems can then be widely applied for the engineering, discovery, and understanding of biological function.
Edward Boyden (Massachusetts Institute of Technology)
Kresten Lindorff-Larsen (University of Copenhagen)
Kresten Lindorff-Larsen trained as a biochemist at the University of Copenhagen and Carlsberg Laboratory, and completed his Ph.D. at the University of Cambridge in 2004. He then moved on to become an assistant professor in Copenhagen before joining D. E. Shaw Research in New York in 2007. He returned to Copenhagen in 2011, where he now serves as a Professor of Computational Protein Biophysics. He received the Danish Independent Research Councils’ Young Researchers’ Award in 2006, was a co-recipient of the 2009 Gordon Bell Prize, and has received several prestigious grants including a Hallas-Møller stipend (2011), a Sapere Aude grant (2012), and most recently a Novo Nordisk Foundation challenge programme grant (2019). His current research interests include developing and applying computational methods for integrative structural biology, and the integration of biophysics and genomics research.
Mor Nitzan (Broad Institute)
Mor Nitzan is a Senior Lecturer (Assistant Professor) in the School of Computer Science and Engineering, and affiliated to the Institute of Physics and the Faculty of Medicine, at the Hebrew University of Jerusalem. Her research is at the interface of Computer Science, Physics, and Biology, focusing on the representation, inference and design of multicellular systems. Her group develops computational frameworks to better understand how cells encode multiple layers of spatiotemporal information, and how to efficiently decode that information from single-cell data. They do so by employing concepts derived from diverse fields, including machine learning, information theory and dynamical systems, while working in collaboration with experimentalists and capitalizing on vast publicly available data. Mor aims to uncover organization principles underlying information processing, division of labor, and self-organization of multicellular systems such as tissues, and how cell-to-cell interactions can be manipulated to optimize tissue structure and function. Prior to joining the Hebrew University as a faculty member, Mor was a John Harvard Distinguished Science Fellow and James S. McDonnell Fellow at Harvard University. She completed a BSc in Physics, and obtained a PhD in Physics and Computational Biology at the Hebrew University, working with Profs. Hanah Margalit and Ofer Biham, on the interplay between structure and dynamics in gene regulatory networks. She was then hosted as a postdoctoral fellow by Prof. Nir Friedman (Hebrew University) and Prof. Aviv Regev (Broad Institute). Mor is a recipient of the Azrieli Foundation Early Career Faculty Fellowship, Google Research Scholar Award, Researcher Recruitment Award by the Israeli Ministry of Science and Technology, John Harvard Distinguished Science Fellowship, James S. McDonnell Fellowship, and the Schmidt Postdoctoral Award for Women in Mathematical and Computing Sciences.
Smita Krishnaswamy (Yale University)
Wouter Boomsma (University of Copenhagen)
Yixin Wang (Columbia University)
David Van Valen (Caltech)
Orr Ashenberg (Broad Institute)
More from the Same Authors
-
2021 Spotlight: Learning Equilibria in Matching Markets from Bandit Feedback »
Meena Jagadeesan · Alexander Wei · Yixin Wang · Michael Jordan · Jacob Steinhardt -
2021 : A sandbox for prediction and integration of DNA, RNA, and proteins in single cells »
Malte Luecken · Daniel Burkhardt · Robrecht Cannoodt · Christopher Lance · Aditi Agrawal · Hananeh Aliee · Ann Chen · Louise Deconinck · Angela Detweiler · Alejandro Granados · Shelly Huynh · Laura Isacco · Yang Kim · Dominik Klein · BONY DE KUMAR · Sunil Kuppasani · Heiko Lickert · Aaron McGeever · Honey Mekonen · Joaquin Melgarejo · Maurizio Morri · Michaela Müller · Norma Neff · Sheryl Paul · Bastian Rieck · Kaylie Schneider · Scott Steelman · Michael Sterr · Daniel Treacy · Alexander Tong · Alexandra-Chloe Villani · Guilin Wang · Jia Yan · Ce Zhang · Angela Pisco · Smita Krishnaswamy · Fabian Theis · Jonathan M Bloom -
2021 : Polaris: accurate spot detection for biological images with deep learning and weak supervision »
Emily Laubscher · William Graf · David Van Valen -
2021 : A kernel for continuously relaxed, discrete Bayesian optimization of protein sequences »
Yevgen Zainchkovskyy · Simon Bartels · Søren Hauberg · Jes Frellsen · Wouter Boomsma -
2021 : Learning Discrete Neural Reaction Class to Improve Retrosynthesis Prediction »
Théophile Gaudin · Animesh Garg · Alan Aspuru-Guzik -
2021 : Desiderata for Representation Learning: A Causal Perspective »
Yixin Wang · Michael Jordan -
2022 : Topological Jet Tagging »
Dawson Thomas · Sarah Demers · Smita Krishnaswamy · Bastian Rieck -
2022 : Geometric NeuralPDE (GNPnet) Models for Learning Dynamics »
Oluwadamilola Fasina · Smita Krishnaswamy · Aditi Krishnapriyan -
2022 : A Bayesian Causal Inference Approach for Assessing Fairness in Clinical Decision-Making »
Linying Zhang · Lauren Richter · Yixin Wang · Anna Ostropolets · Noemie Elhadad · David Blei · George Hripcsak -
2022 : Valid Inference after Causal Discovery »
Paula Gradu · Tijana Zrnic · Yixin Wang · Michael Jordan -
2022 : Interventional Causal Representation Learning »
Kartik Ahuja · Yixin Wang · Divyat Mahajan · Yoshua Bengio -
2022 : Assessing multi-objective optimization of molecules with genetic algorithms against relevant baselines »
Nathanael Kusanda · Gary Tom · Riley Hickman · AkshatKumar Nigam · Kjell Jorner · Alan Aspuru-Guzik -
2022 : Group SELFIES: A Robust Fragment-Based Molecular String Representation »
Austin Cheng · Andy Cai · Santiago Miret · Gustavo Malkomes · Mariano Phielipp · Alan Aspuru-Guzik -
2022 : Conformer Search Using SE3-Transformers and Imitation Learning »
Luca Thiede · Santiago Miret · Krzysztof Sadowski · Haoping Xu · Mariano Phielipp · Alan Aspuru-Guzik -
2022 : Interventional Causal Representation Learning »
Kartik Ahuja · Yixin Wang · Divyat Mahajan · Yoshua Bengio -
2023 Poster: GAUCHE: A Library for Gaussian Processes in Chemistry »
Ryan-Rhys Griffiths · Leo Klarner · Henry Moss · Aditya Ravuri · Sang Truong · Yuanqi Du · Samuel Stanton · Gary Tom · Bojana Rankovic · Arian Jamasb · Aryan Deshwal · Julius Schwartz · Austin Tripp · Gregory Kell · Simon Frieder · Anthony Bourached · Alex Chan · Jacob Moss · Chengzhi Guo · Johannes Peter Dürholt · Saudamini Chaurasia · Ji Won Park · Felix Strieth-Kalthoff · Alpha Lee · Bingqing Cheng · Alan Aspuru-Guzik · Philippe Schwaller · Jian Tang -
2023 Poster: On Learning Necessary and Sufficient Causal Graphs »
Hengrui Cai · Yixin Wang · Michael Jordan · Rui Song -
2023 Poster: Implicit Variational Inference for High-Dimensional Posteriors »
Anshuk Uppal · Kristoffer Stensbo-Smidt · Wouter Boomsma · Jes Frellsen -
2023 Poster: A Heat Diffusion Perspective on Geodesic Preserving Dimensionality Reduction »
Guillaume Huguet · Alexander Tong · Edward De Brouwer · Yanlei Zhang · Guy Wolf · Ian Adelstein · Smita Krishnaswamy -
2023 Poster: Tartarus: A Benchmarking Platform for Realistic And Practical Inverse Molecular Design »
AkshatKumar Nigam · Robert Pollice · Gary Tom · Kjell Jorner · John Willes · Luca Thiede · Anshul Kundaje · Alan Aspuru-Guzik -
2023 Workshop: New Frontiers in Graph Learning (GLFrontiers) »
Jiaxuan You · Rex Ying · Hanjun Dai · Ge Liu · Azalia Mirhoseini · Smita Krishnaswamy -
2023 Workshop: NeurIPS 2023 Workshop: Machine Learning and the Physical Sciences »
Brian Nord · Atilim Gunes Baydin · Adji Bousso Dieng · Emine Kucukbenli · Siddharth Mishra-Sharma · Benjamin Nachman · Kyle Cranmer · Gilles Louppe · Savannah Thais -
2022 : Interventional Causal Representation Learning »
Kartik Ahuja · Yixin Wang · Divyat Mahajan · Yoshua Bengio -
2022 Workshop: Learning Meaningful Representations of Life »
Elizabeth Wood · Adji Bousso Dieng · Aleksandrina Goeva · Alex X Lu · Anshul Kundaje · Chang Liu · Debora Marks · Ed Boyden · Eli N Weinstein · Lorin Crawford · Mor Nitzan · Rebecca Boiarsky · Romain Lopez · Tamara Broderick · Ray Jones · Wouter Boomsma · Yixin Wang · Stephen Ra -
2022 Spotlight: Lightning Talks 6A-4 »
Xiu-Shen Wei · Konstantina Dritsa · Guillaume Huguet · ABHRA CHAUDHURI · Zhenbin Wang · Kevin Qinghong Lin · Yutong Chen · Jianan Zhou · Yongsen Mao · Junwei Liang · Jinpeng Wang · Mao Ye · Yiming Zhang · Aikaterini Thoma · H.-Y. Xu · Daniel Sumner Magruder · Enwei Zhang · Jianing Zhu · Ronglai Zuo · Massimiliano Mancini · Hanxiao Jiang · Jun Zhang · Fangyun Wei · Faen Zhang · Ioannis Pavlopoulos · Zeynep Akata · Xiatian Zhu · Jingfeng ZHANG · Alexander Tong · Mattia Soldan · Chunhua Shen · Yuxin Peng · Liuhan Peng · Michael Wray · Tongliang Liu · Anjan Dutta · Yu Wu · Oluwadamilola Fasina · Panos Louridas · Angel Chang · Manik Kuchroo · Manolis Savva · Shujie LIU · Wei Zhou · Rui Yan · Gang Niu · Liang Tian · Bo Han · Eric Z. XU · Guy Wolf · Yingying Zhu · Brian Mak · Difei Gao · Masashi Sugiyama · Smita Krishnaswamy · Rong-Cheng Tu · Wenzhe Zhao · Weijie Kong · Chengfei Cai · WANG HongFa · Dima Damen · Bernard Ghanem · Wei Liu · Mike Zheng Shou -
2022 Spotlight: Manifold Interpolating Optimal-Transport Flows for Trajectory Inference »
Guillaume Huguet · Daniel Sumner Magruder · Alexander Tong · Oluwadamilola Fasina · Manik Kuchroo · Guy Wolf · Smita Krishnaswamy -
2022 Competition: Multimodal Single-Cell Integration Across Time, Individuals, and Batches »
Daniel Burkhardt · Jonathan Bloom · Robrecht Cannoodt · Malte Luecken · Smita Krishnaswamy · Christopher Lance · Angela Pisco · Fabian Theis -
2022 : Multimodal Single-Cell Integration Across Time and Individuals »
Daniel Burkhardt · Smita Krishnaswamy · Robrecht Cannoodt · Malte Luecken · Jonathan Bloom · Fabian Theis · Christopher Lance · Angela Pisco -
2022 Workshop: Machine Learning and the Physical Sciences »
Atilim Gunes Baydin · Adji Bousso Dieng · Emine Kucukbenli · Gilles Louppe · Siddharth Mishra-Sharma · Benjamin Nachman · Brian Nord · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Lenka Zdeborová · Rianne van den Berg -
2022 : Dynamic Survival Transformers for Causal Inference with Electronic Health Records »
Prayag Chatha · Yixin Wang · Zhenke Wu · Jeffrey Regier -
2022 : Dynamic Survival Transformers for Causal Inference with Electronic Health Records »
Prayag Chatha · Yixin Wang · Zhenke Wu · Jeffrey Regier -
2022 Workshop: AI for Accelerated Materials Design (AI4Mat) »
Santiago Miret · Marta Skreta · Zamyla Morgan-Chan · Benjamin Sanchez-Lengeling · Shyue Ping Ong · Alan Aspuru-Guzik -
2022 Poster: Diffusion Curvature for Estimating Local Curvature in High Dimensional Data »
Dhananjay Bhaskar · Kincaid MacDonald · Oluwadamilola Fasina · Dawson Thomas · Bastian Rieck · Ian Adelstein · Smita Krishnaswamy -
2022 Poster: Markov Chain Score Ascent: A Unifying Framework of Variational Inference with Markovian Gradients »
Kyurae Kim · Jisu Oh · Jacob Gardner · Adji Bousso Dieng · Hongseok Kim -
2022 Poster: Manifold Interpolating Optimal-Transport Flows for Trajectory Inference »
Guillaume Huguet · Daniel Sumner Magruder · Alexander Tong · Oluwadamilola Fasina · Manik Kuchroo · Guy Wolf · Smita Krishnaswamy -
2022 Poster: Anticipating Performativity by Predicting from Predictions »
Celestine Mendler-Dünner · Frances Ding · Yixin Wang -
2022 Poster: Empirical Gateaux Derivatives for Causal Inference »
Michael Jordan · Yixin Wang · Angela Zhou -
2021 : Offline Reinforcement Learning for Hospital Patients When Every Patient is Different »
Barbara Engelhardt -
2021 : Invited Talk 6 Q&A »
Yixin Wang -
2021 : Statistical and Computational Tradeoffs in Variational Bayes »
Yixin Wang -
2021 : Invited Speaker Panel »
Sham Kakade · Minmin Chen · Philip Thomas · Angela Schoellig · Barbara Engelhardt · Doina Precup · George Tucker -
2021 Workshop: Learning Meaningful Representations of Life (LMRL) »
Elizabeth Wood · Adji Bousso Dieng · Aleksandrina Goeva · Anshul Kundaje · Barbara Engelhardt · Chang Liu · David Van Valen · Debora Marks · Edward Boyden · Eli N Weinstein · Lorin Crawford · Mor Nitzan · Romain Lopez · Tamara Broderick · Ray Jones · Wouter Boomsma · Yixin Wang -
2021 Workshop: Machine Learning in Structural Biology »
Ellen Zhong · Raphael Townshend · Stephan Eismann · Namrata Anand · Roshan Rao · John Ingraham · Wouter Boomsma · Sergey Ovchinnikov · Bonnie Berger -
2021 Poster: Consistency Regularization for Variational Auto-Encoders »
Samarth Sinha · Adji Bousso Dieng -
2021 : Multimodal Single-Cell Data Integration + Q&A »
Daniel Burkhardt · Smita Krishnaswamy · Malte Luecken · Debora Marks · Angela Pisco · Bastian Rieck · Jian Tang · Alexander Tong · Fabian Theis · Guy Wolf -
2021 Poster: Posterior Collapse and Latent Variable Non-identifiability »
Yixin Wang · David Blei · John Cunningham -
2021 Poster: A generative nonparametric Bayesian model for whole genomes »
Alan Amin · Eli N Weinstein · Debora Marks -
2021 Poster: Learning Equilibria in Matching Markets from Bandit Feedback »
Meena Jagadeesan · Alexander Wei · Yixin Wang · Michael Jordan · Jacob Steinhardt -
2020 : Panel »
Alan Aspuru-Guzik · Jennifer Listgarten · Klaus-Robert Müller · Nadine Schneider -
2020 : Frank Noe Intro »
Wouter Boomsma -
2020 Workshop: Machine Learning for Structural Biology »
Raphael Townshend · Stephan Eismann · Ron Dror · Ellen Zhong · Namrata Anand · John Ingraham · Wouter Boomsma · Sergey Ovchinnikov · Roshan Rao · Per Greisen · Rachel Kolodny · Bonnie Berger -
2020 : Closing Remarks »
Frederic Chazal · Smita Krishnaswamy · Roland Kwitt · Karthikeyan Natesan Ramamurthy · Bastian Rieck · Yuhei Umeda · Guy Wolf -
2020 : Chang Liu »
Chang Liu -
2020 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Shirley Ho · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Adji Bousso Dieng · Karthik Kashinath · Gilles Louppe · Brian Nord · Michela Paganini · Savannah Thais -
2020 Workshop: Topological Data Analysis and Beyond »
Bastian Rieck · Frederic Chazal · Smita Krishnaswamy · Roland Kwitt · Karthikeyan Natesan Ramamurthy · Yuhei Umeda · Guy Wolf -
2020 : Opening Remarks »
Frederic Chazal · Smita Krishnaswamy · Roland Kwitt · Karthikeyan Natesan Ramamurthy · Bastian Rieck · Yuhei Umeda · Guy Wolf -
2020 Poster: Point process models for sequence detection in high-dimensional neural spike trains »
Alex Williams · Anthony Degleris · Yixin Wang · Scott Linderman -
2020 Oral: Point process models for sequence detection in high-dimensional neural spike trains »
Alex Williams · Anthony Degleris · Yixin Wang · Scott Linderman -
2020 Poster: Uncovering the Topology of Time-Varying fMRI Data using Cubical Persistence »
Bastian Rieck · Tristan Yates · Christian Bock · Karsten Borgwardt · Guy Wolf · Nicholas Turk-Browne · Smita Krishnaswamy -
2020 Spotlight: Uncovering the Topology of Time-Varying fMRI Data using Cubical Persistence »
Bastian Rieck · Tristan Yates · Christian Bock · Karsten Borgwardt · Guy Wolf · Nicholas Turk-Browne · Smita Krishnaswamy -
2020 Poster: Fourier-transform-based attribution priors improve the interpretability and stability of deep learning models for genomics »
Alex Tseng · Avanti Shrikumar · Anshul Kundaje -
2020 Affinity Workshop: Women in Machine Learning »
Xinyi Chen · Erin Grant · Kristy Choi · Krystal Maughan · Xenia Miscouridou · Judy Hanwen Shen · Raquel Aoki · Belén Saldías · Mel Woghiren · Elizabeth Wood -
2019 : Alán Aspuru-Guzik »
Alan Aspuru-Guzik -
2019 : Surya Ganguli, Yasaman Bahri, Florent Krzakala moderated by Lenka Zdeborova »
Florent Krzakala · Yasaman Bahri · Surya Ganguli · Lenka Zdeborová · Adji Bousso Dieng · Joan Bruna -
2019 : Phenotype »
Nir HaCohen · David Reshef · Matthew Johnson · Sam Morris · Aurel Nagy · Gokcen Eraslan · Meromit Singer · Eliezer Van Allen · Smita Krishnaswamy · Casey Greene · Scott Linderman · Alexander Wiltschko · Dylan Kotliar · James Zou · Brendan Bulik-Sullivan -
2019 : Synthetic Systems »
Pamela Silver · Debora Marks · Chang Liu · Possu Huang -
2019 : Molecules and Genomes »
David Haussler · Djork-Arné Clevert · Michael Keiser · Alan Aspuru-Guzik · David Duvenaud · David Jones · Jennifer Wei · Alexander D'Amour -
2019 Workshop: Learning Meaningful Representations of Life »
Elizabeth Wood · Yakir Reshef · Jonathan Bloom · Jasper Snoek · Barbara Engelhardt · Scott Linderman · Suchi Saria · Alexander Wiltschko · Casey Greene · Chang Liu · Kresten Lindorff-Larsen · Debora Marks -
2019 Poster: Variational Bayes under Model Misspecification »
Yixin Wang · David Blei -
2019 Poster: Using Embeddings to Correct for Unobserved Confounding in Networks »
Victor Veitch · Yixin Wang · David Blei -
2019 Poster: Visualizing the PHATE of Neural Networks »
Scott Gigante · Adam S Charles · Smita Krishnaswamy · Gal Mishne -
2019 Tutorial: Machine Learning for Computational Biology and Health »
Anna Goldenberg · Barbara Engelhardt -
2018 Poster: PG-TS: Improved Thompson Sampling for Logistic Contextual Bandits »
Bianca Dumitrascu · Karen Feng · Barbara Engelhardt -
2018 Poster: Geometry Based Data Generation »
Ofir Lindenbaum · Jay Stanley · Guy Wolf · Smita Krishnaswamy -
2018 Spotlight: Geometry Based Data Generation »
Ofir Lindenbaum · Jay Stanley · Guy Wolf · Smita Krishnaswamy -
2018 Poster: 3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data »
Maurice Weiler · Wouter Boomsma · Mario Geiger · Max Welling · Taco Cohen -
2017 : Machine Learning for Molecular Materials Design »
Alan Aspuru-Guzik -
2017 Workshop: Machine Learning for Molecules and Materials »
Kristof Schütt · Klaus-Robert Müller · Anatole von Lilienfeld · José Miguel Hernández-Lobato · Klaus-Robert Müller · Alan Aspuru-Guzik · Bharath Ramsundar · Matt Kusner · Brooks Paige · Stefan Chmiela · Alexandre Tkatchenko · Anatole von Lilienfeld · Koji Tsuda -
2017 Spotlight: Spherical convolutions and their application in molecular modelling »
Wouter Boomsma · Jes Frellsen -
2017 Poster: Spherical convolutions and their application in molecular modelling »
Wouter Boomsma · Jes Frellsen -
2017 Poster: Variational Inference via $\chi$ Upper Bound Minimization »
Adji Bousso Dieng · Dustin Tran · Rajesh Ranganath · John Paisley · David Blei -
2016 Poster: Unsupervised Learning from Noisy Networks with Applications to Hi-C Data »
Bo Wang · Junjie Zhu · Armin Pourshafeie · Oana Ursu · Serafim Batzoglou · Anshul Kundaje -
2016 Poster: Automated scalable segmentation of neurons from multispectral images »
Uygar Sümbül · Douglas Roossien · Dawen Cai · Fei Chen · Nicholas Barry · John Cunningham · Edward Boyden · Liam Paninski -
2014 Workshop: Machine Learning in Computational Biology »
Oliver Stegle · Sara Mostafavi · Anna Goldenberg · Su-In Lee · Michael Leung · Anshul Kundaje · Mark B Gerstein · Martin Renqiang Min · Hannes Bretschneider · Francesco Paolo Casale · Loïc Schwaller · Amit G Deshwar · Benjamin A Logsdon · Yuanyang Zhang · Ali Punjani · Derek C Aguiar · Samuel Kaski