`

Timezone: »

 
Workshop
Machine Learning for Health (ML4H): Advancing Healthcare for All
Stephanie Hyland · Allen Schmaltz · Charles Onu · Ehi Nosakhare · Emily Alsentzer · Irene Y Chen · Matthew McDermott · Subhrajit Roy · Benjamin Akera · Dani Kiyasseh · Fabian Falck · Griffin Adams · Ioana Bica · Oliver J Bear Don't Walk IV · Suproteem Sarkar · Stephen Pfohl · Andrew Beam · Brett Beaulieu-Jones · Danielle Belgrave · Tristan Naumann

Fri Dec 11 06:00 AM -- 04:20 PM (PST) @
Event URL: https://ml4health.github.io/2020/ »

The application of machine learning to healthcare is often characterised by the development of cutting-edge technology aiming to improve patient outcomes. By developing sophisticated models on high-quality datasets we hope to better diagnose, forecast, and otherwise characterise the health of individuals. At the same time, when we build tools which aim to assist highly-specialised caregivers, we limit the benefit of machine learning to only those who can access such care. The fragility of healthcare access both globally and locally prompts us to ask, “How can machine learning be used to help enable healthcare for all?” - the theme of the 2020 ML4H workshop.

Participants at the workshop will be exposed to new questions in machine learning for healthcare, and be prompted to reflect on how their work sits within larger healthcare systems. Given the growing community of researchers in machine learning for health, the workshop will provide an opportunity to discuss common challenges, share expertise, and potentially spark new research directions. By drawing in experts from adjacent disciplines such as public health, fairness, epidemiology, and clinical practice, we aim to further strengthen the interdisciplinarity of machine learning for health.

See our workshop for more information: https://ml4health.github.io/

Author Information

Stephanie Hyland (Microsoft Research)
Allen Schmaltz (Harvard University)
Charles Onu (McGill University)
Ehi Nosakhare (Microsoft)
Emily Alsentzer (MIT)
Irene Y Chen (MIT)

Irene is a PhD student at MIT focusing on applications on health care and fairness. She did her undergrad at Harvard where I studied applied math and computational engineering. Before starting at MIT, she worked for two years at Dropbox as a data scientist and machine learning engineer.

Matthew McDermott (MIT)
Subhrajit Roy (Google)
Benjamin Akera (Mila - Quebec AI Institute)
Dani Kiyasseh (University of Oxford)
Fabian Falck (University of Oxford)
Griffin Adams (Columbia University)

I am an NLP researcher with a focus on text generation of clinical data. After completing a masters in Computational Data Science at Carnegie Mellon's Language Technologies Institute (LTI), I worked at Flatiron Health where I developed and deployed algorithms to extract clinical information from unstructured oncology data at scale. I introduced deep learning to the company and architected a generalized model that improves the status quo of information extraction from large-scale longitudinal clinical notes. I am now a computer science PhD student at Columbia University with Noemie Elhadad. My research focuses on controllable factual text generation of clinical narratives.

Ioana Bica (University of Oxford)
Oliver J Bear Don't Walk IV (Columbia University)
Suproteem Sarkar (Harvard)
Stephen Pfohl (Stanford University)
Andrew Beam (Harvard)
Brett Beaulieu-Jones (Harvard Medical School)
Danielle Belgrave (Microsoft Research)
Tristan Naumann (Microsoft Research)

More from the Same Authors

  • 2021 : The Medkit-Learn(ing) Environment: Medical Decision Modelling through Simulation »
    Alex Chan · Ioana Bica · Alihan Hüyük · Daniel Jarrett · Mihaela van der Schaar
  • 2021 : Improving the Fairness of Deep Chest X-ray Classifiers »
    Haoran Zhang · Natalie Dullerud · Karsten Roth · Stephen Pfohl · Marzyeh Ghassemi
  • 2021 : Poster: The Many Roles that Causal Reasoning Plays in Reasoning about Fairness in Machine Learning »
    Irene Y Chen · Hal Daumé III · Solon Barocas
  • 2021 : Panel II: Machine decisions »
    Anca Dragan · Karen Levy · Himabindu Lakkaraju · Ariel Rosenfeld · Maithra Raghu · Irene Y Chen
  • 2021 Workshop: Machine learning from ground truth: New medical imaging datasets for unsolved medical problems. »
    Katy Haynes · Ziad Obermeyer · Emma Pierson · Marzyeh Ghassemi · Matthew Lungren · Sendhil Mullainathan · Matthew McDermott
  • 2021 : The Many Roles that Causal Reasoning Plays in Reasoning about Fairness in Machine Learning »
    Irene Y Chen · Hal Daumé III · Solon Barocas
  • 2021 Workshop: I (Still) Can't Believe It's Not Better: A workshop for “beautiful” ideas that "should" have worked »
    Aaron Schein · Melanie F. Pradier · Jessica Forde · Stephanie Hyland · Francisco Ruiz
  • 2021 Poster: Invariant Causal Imitation Learning for Generalizable Policies »
    Ioana Bica · Daniel Jarrett · Mihaela van der Schaar
  • 2021 Poster: Time-series Generation by Contrastive Imitation »
    Daniel Jarrett · Ioana Bica · Mihaela van der Schaar
  • 2021 Poster: Meta-learning to Improve Pre-training »
    Aniruddh Raghu · Jonathan Lorraine · Simon Kornblith · Matthew McDermott · David Duvenaud
  • 2021 : D&I Remarks (Danielle Belgrave) »
    Danielle Belgrave
  • 2021 Poster: SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes »
    Zhaozhi Qian · Yao Zhang · Ioana Bica · Angela Wood · Mihaela van der Schaar
  • 2020 : Invited Talk: Danielle Belgrave - Machine Learning for Personalised Healthcare: Why is it not better? »
    Danielle Belgrave
  • 2020 Workshop: Causal Discovery and Causality-Inspired Machine Learning »
    Biwei Huang · Sara Magliacane · Kun Zhang · Danielle Belgrave · Elias Bareinboim · Daniel Malinsky · Thomas Richardson · Christopher Meek · Peter Spirtes · Bernhard Schölkopf
  • 2020 Poster: Strictly Batch Imitation Learning by Energy-based Distribution Matching »
    Daniel Jarrett · Ioana Bica · Mihaela van der Schaar
  • 2020 Poster: Subgraph Neural Networks »
    Emily Alsentzer · Samuel Finlayson · Michelle Li · Marinka Zitnik
  • 2020 Symposium: COVID-19 Symposium Day 2 »
    Andrew Beam · Tristan Naumann · Katherine Heller · Elaine Nsoesie
  • 2020 Poster: Estimating the Effects of Continuous-valued Interventions using Generative Adversarial Networks »
    Ioana Bica · James Jordon · Mihaela van der Schaar
  • 2020 Poster: OrganITE: Optimal transplant donor organ offering using an individual treatment effect »
    Jeroen Berrevoets · James Jordon · Ioana Bica · alexander gimson · Mihaela van der Schaar
  • 2020 : Remarks from the WiML 2020 Diversity & Inclusion Chairs »
    Danielle Belgrave · Meire Fortunato
  • 2020 Symposium: COVID-19 Symposium Day 1 »
    Andrew Beam · Tristan Naumann · Katherine Heller · Elaine Nsoesie
  • 2020 Session: Orals & Spotlights Track 02: COVID/Health/Bio Applications »
    Tristan Naumann · James Zou
  • 2019 : Coffee Break and Poster Session »
    Rameswar Panda · Prasanna Sattigeri · Kush Varshney · Karthikeyan Natesan Ramamurthy · Harvineet Singh · Vishwali Mhasawade · Shalmali Joshi · Laleh Seyyed-Kalantari · Matthew McDermott · Gal Yona · James Atwood · Hansa Srinivasan · Yonatan Halpern · D. Sculley · Behrouz Babaki · Margarida Carvalho · Josie Williams · Narges Razavian · Haoran Zhang · Amy Lu · Irene Y Chen · Xiaojie Mao · Angela Zhou · Nathan Kallus
  • 2019 Workshop: Fair ML in Healthcare »
    Shalmali Joshi · Irene Y Chen · Ziad Obermeyer · Shems Saleh · Sendhil Mullainathan
  • 2019 : Poster Session I »
    Shuangjia Zheng · Arnav Kapur · Umar Asif · Eyal Rozenberg · Cyprien Gilet · Oleksii Sidorov · Yogesh Kumar · Tom Van Steenkiste · William Boag · David Ouyang · Paul Jaeger · Sheng Liu · Aparna Balagopalan · Deepta Rajan · Marta Skreta · Nikhil Pattisapu · Jann Goschenhofer · Viraj Prabhu · Di Jin · Laura-Jayne Gardiner · Irene Li · sriram kumar · Qiyuan Hu · Mehul Motani · Justin Lovelace · Usman Roshan · Lucy Lu Wang · Ilya Valmianski · Hyeonwoo Lee · Sunil Mallya · Elias Chaibub Neto · Jonas Kemp · Marie Charpignon · Amber Nigam · Wei-Hung Weng · Sabri Boughorbel · Alexis Bellot · Lovedeep Gondara · Haoran Zhang · Mohammad Taha Bahadori · John Zech · Rulin Shao · Edward Choi · Laleh Seyyed-Kalantari · Emily Aiken · Ioana Bica · Yiqiu Shen · Kieran Chin-Cheong · Subhrajit Roy · Ioana Baldini · So Yeon Min · Dirk Deschrijver · Pekka Marttinen · Damian Pascual Ortiz · Supriya Nagesh · Niklas Rindtorff · Andriy Mulyar · Katharina Hoebel · Martha Shaka · Pierre Machart · Leon Gatys · Nathan Ng · Matthias Hüser · Devin Taylor · Dennis Barbour · Natalia Martinez · Clara McCreery · Benjamin Eyre · Vivek Natarajan · Ren Yi · Ruibin Ma · Chirag Nagpal · Nan Du · Chufan Gao · Anup Tuladhar · Sam Shleifer · Jason Ren · Pouria Mashouri · Ming Yang Lu · Farideh Bagherzadeh-Khiabani · Olivia Choudhury · Maithra Raghu · Scott Fleming · Mika Jain · GUO YANG · Alena Harley · Stephen Pfohl · Elisabeth Rumetshofer · Alex Fedorov · Saloni Dash · Jacob Pfau · Sabina Tomkins · Colin Targonski · Michael Brudno · Xinyu Li · Yiyang Yu · Nisarg Patel
  • 2019 Workshop: Machine Learning for Health (ML4H): What makes machine learning in medicine different? »
    Andrew Beam · Tristan Naumann · Brett Beaulieu-Jones · Irene Y Chen · Madalina Fiterau · Samuel Finlayson · Emily Alsentzer · Adrian Dalca · Matthew McDermott
  • 2018 : Poster Session I »
    Aniruddh Raghu · Daniel Jarrett · Kathleen Lewis · Elias Chaibub Neto · Nicholas Mastronarde · Shazia Akbar · Chun-Hung Chao · Henghui Zhu · Seth Stafford · Luna Zhang · Jen-Tang Lu · Changhee Lee · Adityanarayanan Radhakrishnan · Fabian Falck · Liyue Shen · Daniel Neil · Yusuf Roohani · Aparna Balagopalan · Brett Marinelli · Hagai Rossman · Sven Giesselbach · Jose Javier Gonzalez Ortiz · Edward De Brouwer · Byung-Hoon Kim · Rafid Mahmood · Tzu Ming Hsu · Antonio Ribeiro · Rumi Chunara · Agni Orfanoudaki · Kristen Severson · Mingjie Mai · Sonali Parbhoo · Albert Haque · Viraj Prabhu · Di Jin · Alena Harley · Geoffroy Dubourg-Felonneau · Xiaodan Hu · Maithra Raghu · Jonathan Warrell · Nelson Johansen · Wenyuan Li · Marko Järvenpää · Satya Narayan Shukla · Sarah Tan · Vincent Fortuin · Beau Norgeot · Yi-Te Hsu · Joel H Saltz · Veronica Tozzo · Andrew Miller · Guillaume Ausset · Azin Asgarian · Francesco Paolo Casale · Antoine Neuraz · Bhanu Pratap Singh Rawat · Turgay Ayer · Xinyu Li · Mehul Motani · Nathaniel Braman · Laetitia M Shao · Adrian Dalca · Hyunkwang Lee · Emma Pierson · Sandesh Ghimire · Yuji Kawai · Owen Lahav · Anna Goldenberg · Denny Wu · Pavitra Krishnaswamy · Colin Pawlowski · Arijit Ukil · Yuhui Zhang
  • 2018 Workshop: Machine Learning for Health (ML4H): Moving beyond supervised learning in healthcare »
    Andrew Beam · Tristan Naumann · Marzyeh Ghassemi · Matthew McDermott · Madalina Fiterau · Irene Y Chen · Brett Beaulieu-Jones · Michael Hughes · Farah Shamout · Corey Chivers · Jaz Kandola · Alexandre Yahi · Samuel Finlayson · Bruno Jedynak · Peter Schulam · Natalia Antropova · Jason Fries · Adrian Dalca · Irene Chen
  • 2017 : Coffee break and Poster Session I »
    Nishith Khandwala · Steve Gallant · Gregory Way · Aniruddh Raghu · Li Shen · Aydan Gasimova · Alican Bozkurt · William Boag · Daniel Lopez-Martinez · Ulrich Bodenhofer · Samaneh Nasiri GhoshehBolagh · Michelle Guo · Christoph Kurz · Kirubin Pillay · Kimis Perros · George H Chen · Alexandre Yahi · Madhumita Sushil · Sanjay Purushotham · Elena Tutubalina · Tejpal Virdi · Marc-Andre Schulz · Samuel Weisenthal · Bharat Srikishan · Petar Veličković · Kartik Ahuja · Andrew Miller · Erin Craig · Disi Ji · Filip Dabek · Chloé Pou-Prom · Hejia Zhang · Janani Kalyanam · Wei-Hung Weng · Harish Bhat · Hugh Chen · Simon Kohl · Mingwu Gao · Tingting Zhu · Ming-Zher Poh · Iñigo Urteaga · Antoine Honoré · Alessandro De Palma · Maruan Al-Shedivat · Pranav Rajpurkar · Matthew McDermott · Vincent Chen · Yanan Sui · Yun-Geun Lee · Li-Fang Cheng · Chen Fang · Sibt ul Hussain · Cesare Furlanello · Zeev Waks · Hiba Chougrad · Hedvig Kjellstrom · Finale Doshi-Velez · Wolfgang Fruehwirt · Yanqing Zhang · Lily Hu · Junfang Chen · Sunho Park · Gatis Mikelsons · Jumana Dakka · Stephanie Hyland · yann chevaleyre · Hyunwoo Lee · Xavier Giro-i-Nieto · David Kale · Michael Hughes · Gabriel Erion · Rishab Mehra · William Zame · Stojan Trajanovski · Prithwish Chakraborty · Kelly Peterson · Muktabh Mayank Srivastava · Amy Jin · Heliodoro Tejeda Lemus · Priyadip Ray · Tamas Madl · Joseph Futoma · Enhao Gong · Syed Rameel Ahmad · Eric Lei · Ferdinand Legros
  • 2017 Workshop: Machine Learning for Health (ML4H) - What Parts of Healthcare are Ripe for Disruption by Machine Learning Right Now? »
    Jason Fries · Alex Wiltschko · Andrew Beam · Isaac S Kohane · Jasper Snoek · Peter Schulam · Madalina Fiterau · David Kale · Rajesh Ranganath · Bruno Jedynak · Michael Hughes · Tristan Naumann · Natalia Antropova · Adrian Dalca · SHUBHI ASTHANA · Prateek Tandon · Jaz Kandola · Uri Shalit · Marzyeh Ghassemi · Tim Althoff · Alexander Ratner · Jumana Dakka
  • 2015 : Machine Learning Applied to Birth Asphyxia »
    Charles Onu