Timezone: »
The application of machine learning to healthcare is often characterised by the development of cutting-edge technology aiming to improve patient outcomes. By developing sophisticated models on high-quality datasets we hope to better diagnose, forecast, and otherwise characterise the health of individuals. At the same time, when we build tools which aim to assist highly-specialised caregivers, we limit the benefit of machine learning to only those who can access such care. The fragility of healthcare access both globally and locally prompts us to ask, “How can machine learning be used to help enable healthcare for all?” - the theme of the 2020 ML4H workshop.
Participants at the workshop will be exposed to new questions in machine learning for healthcare, and be prompted to reflect on how their work sits within larger healthcare systems. Given the growing community of researchers in machine learning for health, the workshop will provide an opportunity to discuss common challenges, share expertise, and potentially spark new research directions. By drawing in experts from adjacent disciplines such as public health, fairness, epidemiology, and clinical practice, we aim to further strengthen the interdisciplinarity of machine learning for health.
See our workshop for more information: https://ml4health.github.io/
Fri 6:00 a.m. - 6:10 a.m.
|
Opening Remarks
(
Opening
)
|
🔗 |
Fri 6:10 a.m. - 6:30 a.m.
|
Noémie Elhadad: Large scale characterization for health equity assessment
(
Keynote
)
Large scale characterization for health equity assessment |
Noemie Elhadad 🔗 |
Fri 6:30 a.m. - 6:50 a.m.
|
Mark Dredze: Reducing Health Disparities in the Future of Medicine
(
Keynote
)
SlidesLive Video » Health disparities in the United States are one of the largest factors in reducing the health of the population. Disparities means some groups have lower life expectancy, are dying at higher rates from COVID-19, and utilize less mental health services, to name just a few examples. The future of medicine will be based on Artificial Intelligence and new technological platforms that promise to improve outcomes and reduce cost. Our role as AI researchers should be to ensure that these new technologies also reduce health disparities. In this talk I will describe recent work showing how we can work to reduce health disparities in the future of medicine. By ensuring that our task, datasets, algorithms and evaluations are equitable and representative of all types of patients, we can ensure that the research we develop will reduce health disparities. |
Mark Dredze 🔗 |
Fri 6:50 a.m. - 7:25 a.m.
|
Panel with Noémie Elhadad and Mark Dredze
(
Panel/QA
)
Please use the video feed above to watch the panel. Post your questions at any time in RocketChat. |
🔗 |
Fri 7:25 a.m. - 7:40 a.m.
|
Break
link »
Click on "Open Link" to mingle with other attendees in the Gather.Town Lounge |
🔗 |
Fri 7:40 a.m. - 8:00 a.m.
|
Sponsor remarks: Modeling Pan-tumor, Personalized Healthcare Insights in a Multi-modal, Real-world Oncology Database with Sarah McGough
(
Keynote
)
Please use the video feed above to watch this talk. Post your questions at any time in RocketChat. |
🔗 |
Fri 8:00 a.m. - 8:10 a.m.
|
Spotlight A-1: "ML4H Auditing: From Paper to Practice"
(
Spotlights
)
SlidesLive Video » |
Luis Oala 🔗 |
Fri 8:10 a.m. - 8:20 a.m.
|
Spotlight A-2: "The unreasonable effectiveness of Batch-Norm statistics in addressing catastrophic forgetting across medical institutions"
(
Spotlights
)
SlidesLive Video » |
Sharut Gupta 🔗 |
Fri 8:20 a.m. - 8:30 a.m.
|
Spotlight A-3: "DeepHeartBeat: Latent trajectory learning of cardiac cycles using cardiac ultrasounds"
(
Spotlights
)
SlidesLive Video » |
Fabian Laumer 🔗 |
Fri 8:30 a.m. - 9:30 a.m.
|
Poster session A
(
Poster session
)
link »
Click on "Open Link" to attend the poster session in Gather.Town |
🔗 |
Fri 9:30 a.m. - 12:30 p.m.
|
Lunch
link »
Click on "Open Link" to mingle with other attendees in the Gather.Town Lounge |
🔗 |
Fri 12:30 p.m. - 12:50 p.m.
|
Judy Gichoya: Operationalising Fairness in Medical Algorithms: A grand challenge
(
Keynote
)
SlidesLive Video » The year 2020 has brought into focus a second pandemic of social injustice and systemic bias with the disproportionate deaths observed for minority patients infected with COVID. As we observe an increase in development and adoption of AI for medical care, we note variable performance of the models when tested on previously unseen datasets, and also bias when the outcome proxies such as healthcare costs are utilized. Despite progressive maturity in AI development with increased availability of large open source datasets and regulatory guidelines, operationalizing fairness is difficult and remains largely unexplored. In this talk, we review the background/context for FAIR and UNFAIR sequelae of AI algorithms in healthcare, describe practical approaches to FAIR Medical AI, and issue a grand challenge with open/unanswered questions. |
Judy Gichoya 🔗 |
Fri 12:50 p.m. - 1:10 p.m.
|
Ziad Obermeyer: Explaining Pain Disparities
(
Keynote
)
SlidesLive Video » |
Ziad Obermeyer 🔗 |
Fri 1:10 p.m. - 1:45 p.m.
|
Panel with Judy Gichoya and Ziad Obermeyer
(
Panel/QA
)
Please use the video feed above to watch this panel. Post your questions at any time in RocketChat. |
🔗 |
Fri 1:45 p.m. - 1:55 p.m.
|
Spotlight B-1: "A Bayesian Hierarchical Network for Combining Heterogeneous Data Sources in Medical Diagnoses"
(
Spotlights
)
SlidesLive Video » |
Claire Donnat 🔗 |
Fri 1:55 p.m. - 2:05 p.m.
|
Spotlight B-2: "Assessing racial inequality in COVID-19 testing with Bayesian threshold tests"
(
Spotlights
)
SlidesLive Video » |
Emma Pierson 🔗 |
Fri 2:05 p.m. - 2:15 p.m.
|
Spotlight B-3: "EEG-GCNN: Augmenting Electroencephalogram-based Neurological Disease Diagnosis using a Domain-guided Graph Convolutional Neural Network"
(
Spotlights
)
SlidesLive Video » |
Neeraj Wagh 🔗 |
Fri 2:15 p.m. - 3:15 p.m.
|
Poster session B
(
Poster session
)
link »
Click on "Open Link" to attend the poster session in Gather.Town |
🔗 |
Fri 3:15 p.m. - 3:30 p.m.
|
Break
link »
Click on "Open Link" to mingle with other attendees in the Gather.Town Lounge |
🔗 |
Fri 3:30 p.m. - 3:50 p.m.
|
Andrew Ng: Practical limitations of today's deep learning in healthcare
(
Keynote
)
SlidesLive Video » Recent advances in training deep learning algorithms have demonstrated potential to accommodate the complex variations present in medical data. In this talk, I will describe technical advancements and challenges in the development and clinical application of deep learning algorithms designed to interpret medical images. I will also describe advances and current challenges in the deployment of medical imaging deep learning algorithms into practice. This talk presents work that is jointly done with Matt Lungren, Curt Langlotz, Nigam Shah, and several more collaborators. |
Andrew Ng 🔗 |
Fri 3:50 p.m. - 4:10 p.m.
|
Panel with Andrew Ng
(
Panel/QA
)
Please use the video feed above to watch this panel. Post your questions at any time in RocketChat. |
🔗 |
Fri 4:10 p.m. - 4:20 p.m.
|
Closing remarks
(
Closing
)
|
🔗 |
Author Information
Stephanie Hyland (Microsoft Research)
Allen Schmaltz (Harvard University)
Charles Onu (McGill University)
Ehi Nosakhare (Microsoft)
Emily Alsentzer (MIT)
Irene Y Chen (MIT)
Irene is a PhD student at MIT focusing on applications on health care and fairness. She did her undergrad at Harvard where I studied applied math and computational engineering. Before starting at MIT, she worked for two years at Dropbox as a data scientist and machine learning engineer.
Matthew McDermott (MIT)
Subhrajit Roy (Google)
Benjamin Akera (Mila - Quebec AI Institute)
Dani Kiyasseh (University of Oxford)
Fabian Falck (University of Oxford)
Griffin Adams (Columbia University)
I am an NLP researcher with a focus on text generation of clinical data. After completing a masters in Computational Data Science at Carnegie Mellon's Language Technologies Institute (LTI), I worked at Flatiron Health where I developed and deployed algorithms to extract clinical information from unstructured oncology data at scale. I introduced deep learning to the company and architected a generalized model that improves the status quo of information extraction from large-scale longitudinal clinical notes. I am now a computer science PhD student at Columbia University with Noemie Elhadad. My research focuses on controllable factual text generation of clinical narratives.
Ioana Bica (University of Oxford)
Oliver J Bear Don't Walk IV (Columbia University)
Suproteem Sarkar (Harvard)
Stephen Pfohl (Stanford University)
Andrew Beam (Harvard)
Brett Beaulieu-Jones (Harvard Medical School)
Danielle Belgrave (Microsoft Research)
Tristan Naumann (Microsoft Research)
More from the Same Authors
-
2021 : The Medkit-Learn(ing) Environment: Medical Decision Modelling through Simulation »
Alex Chan · Ioana Bica · Alihan Hüyük · Daniel Jarrett · Mihaela van der Schaar -
2021 : Improving the Fairness of Deep Chest X-ray Classifiers »
Haoran Zhang · Natalie Dullerud · Karsten Roth · Stephen Pfohl · Marzyeh Ghassemi -
2021 : Poster: The Many Roles that Causal Reasoning Plays in Reasoning about Fairness in Machine Learning »
Irene Y Chen · Hal Daumé III · Solon Barocas -
2023 Poster: SatBird: a Dataset for Bird Species Distribution Modeling using Remote Sensing and Citizen Science Data »
Mélisande Teng · Amna Elmustafa · Benjamin Akera · Hager Radi · Yoshua Bengio · Hugo Larochelle · David Rolnick -
2023 Poster: LLaVA-Med: Training a Large Language-and-Vision Assistant for Biomedicine in One Day »
Chunyuan Li · Cliff Wong · Sheng Zhang · Naoto Usuyama · Haotian Liu · Jianwei Yang · Tristan Naumann · Hoifung Poon · Jianfeng Gao -
2022 : Advancing the participatory approach to AI in Mental Health »
Wilson Lee · Munmun De Choudhury · Morgan Scheuerman · Julia Hamer-Hunt · Dan Joyce · Nenad Tomasev · Kevin McKee · Shakir Mohamed · Danielle Belgrave · Christopher Burr -
2022 : Just Following AI Orders: When Unbiased People Are Influenced By Biased AI »
Hammaad Adam · Aparna Balagopalan · Emily Alsentzer · Fotini Christia · Marzyeh Ghassemi -
2022 : Dynamic outcomes-based clustering of disease progression in mechanically ventilated patients »
Emma Rocheteau · Ioana Bica · Pietro Lió · Ari Ercole -
2022 Poster: Diagnosing failures of fairness transfer across distribution shift in real-world medical settings »
Jessica Schrouff · Natalie Harris · Sanmi Koyejo · Ibrahim Alabdulmohsin · Eva Schnider · Krista Opsahl-Ong · Alexander Brown · Subhrajit Roy · Diana Mincu · Christina Chen · Awa Dieng · Yuan Liu · Vivek Natarajan · Alan Karthikesalingam · Katherine Heller · Silvia Chiappa · Alexander D'Amour -
2022 Poster: Benchmarking Heterogeneous Treatment Effect Models through the Lens of Interpretability »
Jonathan Crabbé · Alicia Curth · Ioana Bica · Mihaela van der Schaar -
2022 Poster: Deep Learning Methods for Proximal Inference via Maximum Moment Restriction »
Benjamin Kompa · David Bellamy · Tom Kolokotrones · james m robins · Andrew Beam -
2022 Poster: Transfer Learning on Heterogeneous Feature Spaces for Treatment Effects Estimation »
Ioana Bica · Mihaela van der Schaar -
2022 Poster: Data-IQ: Characterizing subgroups with heterogeneous outcomes in tabular data »
Nabeel Seedat · Jonathan Crabbé · Ioana Bica · Mihaela van der Schaar -
2021 : Panel II: Machine decisions »
Anca Dragan · Karen Levy · Himabindu Lakkaraju · Ariel Rosenfeld · Maithra Raghu · Irene Y Chen -
2021 Workshop: Machine learning from ground truth: New medical imaging datasets for unsolved medical problems. »
Katy Haynes · Ziad Obermeyer · Emma Pierson · Marzyeh Ghassemi · Matthew Lungren · Sendhil Mullainathan · Matthew McDermott -
2021 : The Many Roles that Causal Reasoning Plays in Reasoning about Fairness in Machine Learning »
Irene Y Chen · Hal Daumé III · Solon Barocas -
2021 Workshop: I (Still) Can't Believe It's Not Better: A workshop for “beautiful” ideas that "should" have worked »
Aaron Schein · Melanie F. Pradier · Jessica Forde · Stephanie Hyland · Francisco Ruiz -
2021 Poster: Invariant Causal Imitation Learning for Generalizable Policies »
Ioana Bica · Daniel Jarrett · Mihaela van der Schaar -
2021 Poster: Time-series Generation by Contrastive Imitation »
Daniel Jarrett · Ioana Bica · Mihaela van der Schaar -
2021 Poster: Meta-learning to Improve Pre-training »
Aniruddh Raghu · Jonathan Lorraine · Simon Kornblith · Matthew McDermott · David Duvenaud -
2021 Poster: SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes »
Zhaozhi Qian · Yao Zhang · Ioana Bica · Angela Wood · Mihaela van der Schaar -
2020 : Invited Talk: Danielle Belgrave - Machine Learning for Personalised Healthcare: Why is it not better? »
Danielle Belgrave -
2020 Workshop: Causal Discovery and Causality-Inspired Machine Learning »
Biwei Huang · Sara Magliacane · Kun Zhang · Danielle Belgrave · Elias Bareinboim · Daniel Malinsky · Thomas Richardson · Christopher Meek · Peter Spirtes · Bernhard Schölkopf -
2020 Poster: Strictly Batch Imitation Learning by Energy-based Distribution Matching »
Daniel Jarrett · Ioana Bica · Mihaela van der Schaar -
2020 Poster: Subgraph Neural Networks »
Emily Alsentzer · Samuel Finlayson · Michelle Li · Marinka Zitnik -
2020 Symposium: COVID-19 Symposium Day 2 »
Andrew Beam · Tristan Naumann · Katherine Heller · Elaine Nsoesie -
2020 Poster: Estimating the Effects of Continuous-valued Interventions using Generative Adversarial Networks »
Ioana Bica · James Jordon · Mihaela van der Schaar -
2020 Poster: OrganITE: Optimal transplant donor organ offering using an individual treatment effect »
Jeroen Berrevoets · James Jordon · Ioana Bica · alexander gimson · Mihaela van der Schaar -
2020 : Remarks from the WiML 2020 Diversity & Inclusion Chairs »
Danielle Belgrave · Meire Fortunato -
2020 Symposium: COVID-19 Symposium Day 1 »
Andrew Beam · Tristan Naumann · Katherine Heller · Elaine Nsoesie -
2020 Session: Orals & Spotlights Track 02: COVID/Health/Bio Applications »
Tristan Naumann · James Zou -
2019 : Coffee Break and Poster Session »
Rameswar Panda · Prasanna Sattigeri · Kush Varshney · Karthikeyan Natesan Ramamurthy · Harvineet Singh · Vishwali Mhasawade · Shalmali Joshi · Laleh Seyyed-Kalantari · Matthew McDermott · Gal Yona · James Atwood · Hansa Srinivasan · Yonatan Halpern · D. Sculley · Behrouz Babaki · Margarida Carvalho · Josie Williams · Narges Razavian · Haoran Zhang · Amy Lu · Irene Y Chen · Xiaojie Mao · Angela Zhou · Nathan Kallus -
2019 Workshop: Fair ML in Healthcare »
Shalmali Joshi · Irene Y Chen · Ziad Obermeyer · Shems Saleh · Sendhil Mullainathan -
2019 : Poster Session I »
Shuangjia Zheng · Arnav Kapur · Umar Asif · Eyal Rozenberg · Cyprien Gilet · Oleksii Sidorov · Yogesh Kumar · Tom Van Steenkiste · William Boag · David Ouyang · Paul Jaeger · Sheng Liu · Aparna Balagopalan · Deepta Rajan · Marta Skreta · Nikhil Pattisapu · Jann Goschenhofer · Viraj Prabhu · Di Jin · Laura-Jayne Gardiner · Irene Li · sriram kumar · Qiyuan Hu · Mehul Motani · Justin Lovelace · Usman Roshan · Lucy Lu Wang · Ilya Valmianski · Hyeonwoo Lee · Sunil Mallya · Elias Chaibub Neto · Jonas Kemp · Marie Charpignon · Amber Nigam · Wei-Hung Weng · Sabri Boughorbel · Alexis Bellot · Lovedeep Gondara · Haoran Zhang · Taha Bahadori · John Zech · Rulin Shao · Edward Choi · Laleh Seyyed-Kalantari · Emily Aiken · Ioana Bica · Yiqiu Shen · Kieran Chin-Cheong · Subhrajit Roy · Ioana Baldini · So Yeon Min · Dirk Deschrijver · Pekka Marttinen · Damian Pascual Ortiz · Supriya Nagesh · Niklas Rindtorff · Andriy Mulyar · Katharina Hoebel · Martha Shaka · Pierre Machart · Leon Gatys · Nathan Ng · Matthias Hüser · Devin Taylor · Dennis Barbour · Natalia Martinez · Clara McCreery · Benjamin Eyre · Vivek Natarajan · Ren Yi · Ruibin Ma · Chirag Nagpal · Nan Du · Chufan Gao · Anup Tuladhar · Sam Shleifer · Jason Ren · Pouria Mashouri · Ming Yang Lu · Farideh Bagherzadeh-Khiabani · Olivia Choudhury · Maithra Raghu · Scott Fleming · Mika Jain · GUO YANG · Alena Harley · Stephen Pfohl · Elisabeth Rumetshofer · Alex Fedorov · Saloni Dash · Jacob Pfau · Sabina Tomkins · Colin Targonski · Michael Brudno · Xinyu Li · Yiyang Yu · Nisarg Patel -
2019 Workshop: Machine Learning for Health (ML4H): What makes machine learning in medicine different? »
Andrew Beam · Tristan Naumann · Brett Beaulieu-Jones · Irene Y Chen · Madalina Fiterau · Samuel Finlayson · Emily Alsentzer · Adrian Dalca · Matthew McDermott -
2018 : Poster Session I »
Aniruddh Raghu · Daniel Jarrett · Kathleen Lewis · Elias Chaibub Neto · Nicholas Mastronarde · Shazia Akbar · Chun-Hung Chao · Henghui Zhu · Seth Stafford · Luna Zhang · Jen-Tang Lu · Changhee Lee · Adityanarayanan Radhakrishnan · Fabian Falck · Liyue Shen · Daniel Neil · Yusuf Roohani · Aparna Balagopalan · Brett Marinelli · Hagai Rossman · Sven Giesselbach · Jose Javier Gonzalez Ortiz · Edward De Brouwer · Byung-Hoon Kim · Rafid Mahmood · Tzu Ming Hsu · Antonio Ribeiro · Rumi Chunara · Agni Orfanoudaki · Kristen Severson · Mingjie Mai · Sonali Parbhoo · Albert Haque · Viraj Prabhu · Di Jin · Alena Harley · Geoffroy Dubourg-Felonneau · Xiaodan Hu · Maithra Raghu · Jonathan Warrell · Nelson Johansen · Wenyuan Li · Marko Järvenpää · Satya Narayan Shukla · Sarah Tan · Vincent Fortuin · Beau Norgeot · Yi-Te Hsu · Joel H Saltz · Veronica Tozzo · Andrew Miller · Guillaume Ausset · Azin Asgarian · Francesco Paolo Casale · Antoine Neuraz · Bhanu Pratap Singh Rawat · Turgay Ayer · Xinyu Li · Mehul Motani · Nathaniel Braman · Laetitia M Shao · Adrian Dalca · Hyunkwang Lee · Emma Pierson · Sandesh Ghimire · Yuji Kawai · Owen Lahav · Anna Goldenberg · Denny Wu · Pavitra Krishnaswamy · Colin Pawlowski · Arijit Ukil · Yuhui Zhang -
2018 Workshop: Machine Learning for Health (ML4H): Moving beyond supervised learning in healthcare »
Andrew Beam · Tristan Naumann · Marzyeh Ghassemi · Matthew McDermott · Madalina Fiterau · Irene Y Chen · Brett Beaulieu-Jones · Michael Hughes · Farah Shamout · Corey Chivers · Jaz Kandola · Alexandre Yahi · Samuel Finlayson · Bruno Jedynak · Peter Schulam · Natalia Antropova · Jason Fries · Adrian Dalca · Irene Chen -
2017 : Coffee break and Poster Session I »
Nishith Khandwala · Steve Gallant · Gregory Way · Aniruddh Raghu · Li Shen · Aydan Gasimova · Alican Bozkurt · William Boag · Daniel Lopez-Martinez · Ulrich Bodenhofer · Samaneh Nasiri GhoshehBolagh · Michelle Guo · Christoph Kurz · Kirubin Pillay · Kimis Perros · George H Chen · Alexandre Yahi · Madhumita Sushil · Sanjay Purushotham · Elena Tutubalina · Tejpal Virdi · Marc-Andre Schulz · Samuel Weisenthal · Bharat Srikishan · Petar Veličković · Kartik Ahuja · Andrew Miller · Erin Craig · Disi Ji · Filip Dabek · Chloé Pou-Prom · Hejia Zhang · Janani Kalyanam · Wei-Hung Weng · Harish Bhat · Hugh Chen · Simon Kohl · Mingwu Gao · Tingting Zhu · Ming-Zher Poh · Iñigo Urteaga · Antoine Honoré · Alessandro De Palma · Maruan Al-Shedivat · Pranav Rajpurkar · Matthew McDermott · Vincent Chen · Yanan Sui · Yun-Geun Lee · Li-Fang Cheng · Chen Fang · Sibt ul Hussain · Cesare Furlanello · Zeev Waks · Hiba Chougrad · Hedvig Kjellstrom · Finale Doshi-Velez · Wolfgang Fruehwirt · Yanqing Zhang · Lily Hu · Junfang Chen · Sunho Park · Gatis Mikelsons · Jumana Dakka · Stephanie Hyland · yann chevaleyre · Hyunwoo Lee · Xavier Giro-i-Nieto · David Kale · Michael Hughes · Gabriel Erion · Rishab Mehra · William Zame · Stojan Trajanovski · Prithwish Chakraborty · Kelly Peterson · Muktabh Mayank Srivastava · Amy Jin · Heliodoro Tejeda Lemus · Priyadip Ray · Tamas Madl · Joseph Futoma · Enhao Gong · Syed Rameel Ahmad · Eric Lei · Ferdinand Legros -
2017 Workshop: Machine Learning for Health (ML4H) - What Parts of Healthcare are Ripe for Disruption by Machine Learning Right Now? »
Jason Fries · Alex Wiltschko · Andrew Beam · Isaac S Kohane · Jasper Snoek · Peter Schulam · Madalina Fiterau · David Kale · Rajesh Ranganath · Bruno Jedynak · Michael Hughes · Tristan Naumann · Natalia Antropova · Adrian Dalca · SHUBHI ASTHANA · Prateek Tandon · Jaz Kandola · Uri Shalit · Marzyeh Ghassemi · Tim Althoff · Alexander Ratner · Jumana Dakka -
2015 : Machine Learning Applied to Birth Asphyxia »
Charles Onu