Timezone: »
The exponential growth of AI research has led to several papers floating on arxiv, making it difficult to review existing literature. Despite the huge demand, the proportion of survey & analyses papers published is very low due to reasons like lack of a venue and incentives. Our Workshop, ML-RSA provides a platform and incentivizes writing such types of papers. It meets the need of taking a step back, looking at the sub-field as a whole and evaluating actual progress. We will accept 3 types of papers: broad survey papers, meta-analyses, and retrospectives. Survey papers will mention and cluster different types of approaches, provide pros and cons, highlight good source code implementations, applications and emphasize impactful literature. We expect this type of paper to provide a detailed investigation of the techniques and link together themes across multiple works. The main aim of these will be to organize techniques and lower the barrier to entry for newcomers. Meta-Analyses, on the other hand, are forward-looking, aimed at providing critical insights on the current state-of-affairs of a sub-field and propose new directions based on them. These are expected to be more than just an ablation study -- though an empirical analysis is encouraged as it can provide for a stronger narrative. Ideally, they will seek to showcase trends that are not possible to be seen when looking at individual papers. Finally, retrospectives seek to provide further insights ex post by the authors of a paper: these could be technical, insights into the research process, or other helpful information that isn’t apparent from the original work.
Fri 8:30 a.m. - 8:55 a.m.
|
Introduction
|
🔗 |
Fri 9:00 a.m. - 9:30 a.m.
|
Invited: Shakir Mohamed
(
Talks
)
SlidesLive Video » |
Shakir Mohamed 🔗 |
Fri 9:30 a.m. - 9:45 a.m.
|
Q&A with Shakir
(
Q&A
)
|
Shakir Mohamed 🔗 |
Fri 10:00 a.m. - 10:55 a.m.
|
Brainstorming
(
Discussions
)
|
🔗 |
Fri 10:55 a.m. - 11:00 a.m.
|
Intro to speaker 2 : Kilian Weinberger
|
🔗 |
Fri 11:00 a.m. - 11:30 a.m.
|
Invited: Kilian Weinberger
(
Talks
)
SlidesLive Video » |
Kilian Weinberger 🔗 |
Fri 11:30 a.m. - 11:45 a.m.
|
Q&A with Kilian
(
Q&A
)
|
Kilian Weinberger 🔗 |
Fri 12:00 p.m. - 12:50 p.m.
|
Panel
(
Live Panel
)
Moderator: Jessica Forde |
Kilian Weinberger · Maria De-Arteaga · Shibani Santurkar · Jonathan Frankle · Deborah Raji 🔗 |
Fri 12:55 p.m. - 1:00 p.m.
|
Intro to speaker 3 Maria De-Artega
|
🔗 |
Fri 1:00 p.m. - 1:30 p.m.
|
Invited: Maria De-Artega
(
Talks
)
SlidesLive Video » |
Maria De-Arteaga 🔗 |
Fri 1:30 p.m. - 1:45 p.m.
|
Q&A with Maria
(
Q&A
)
|
Maria De-Arteaga 🔗 |
Fri 1:55 p.m. - 2:00 p.m.
|
Intro to speaker 4 : Shibani Santurkar
|
🔗 |
Fri 2:00 p.m. - 2:30 p.m.
|
Invited: Shibani Santurkar
(
Talks
)
SlidesLive Video » |
Shibani Santurkar 🔗 |
Fri 2:35 p.m. - 2:45 p.m.
|
Q&A with Shibani
(
Q&A
)
|
Shibani Santurkar 🔗 |
Fri 2:55 p.m. - 3:00 p.m.
|
Poster Session Starts
(
Poster Talks
)
Please find zoom links for posters on our Rocket Chat. |
🔗 |
Fri 4:55 p.m. - 5:00 p.m.
|
Intro to speaker 5 : Lana Sinapayen
|
🔗 |
Fri 5:00 p.m. - 5:30 p.m.
|
Invited: Lana Sinapayen
(
Talks
)
SlidesLive Video » |
Lana Sinapayen 🔗 |
Fri 5:30 p.m. - 5:45 p.m.
|
Q&A with Lana
(
Q&A
)
|
Lana Sinapayen 🔗 |
Fri 5:55 p.m. - 6:00 p.m.
|
Intro to Speaker 6 : Reza Shokri
|
🔗 |
Fri 6:00 p.m. - 6:30 p.m.
|
Invited: Reza Shokri
(
Talks
)
SlidesLive Video » |
Reza Shokri 🔗 |
Fri 6:30 p.m. - 6:45 p.m.
|
Q&A with Reza
(
Q&A
)
|
Reza Shokri 🔗 |
Fri 7:00 p.m. - 8:00 p.m.
|
Awardees' Talks
(
Contributed Talks
)
|
🔗 |
Fri 8:00 p.m. - 8:05 p.m.
|
Closing
(
Remarks
)
|
🔗 |
Author Information
Chhavi Yadav (NYU, Walmart Labs)
Prabhu Pradhan (Max Planck Institute for Intelligent Systems (MPI-IS))
[Prabhu](https://prabhupradhan.github.io) is a Research Assistant at MPI-IS Tübingen, working on Robustness and Confounding in Machine Learning.
Jesse Dodge (Allen Institute for AI)
Mayoore Jaiswal (IBM)
Peter Henderson (Stanford University)
Abhishek Gupta (Montreal AI Ethics Institute, Microsoft, and McGill University)
Ryan Lowe (McGill)
Jessica Forde (Brown University)
Joelle Pineau (McGill University)
Joelle Pineau is an Associate Professor and William Dawson Scholar at McGill University where she co-directs the Reasoning and Learning Lab. She also leads the Facebook AI Research lab in Montreal, Canada. She holds a BASc in Engineering from the University of Waterloo, and an MSc and PhD in Robotics from Carnegie Mellon University. Dr. Pineau's research focuses on developing new models and algorithms for planning and learning in complex partially-observable domains. She also works on applying these algorithms to complex problems in robotics, health care, games and conversational agents. She serves on the editorial board of the Journal of Artificial Intelligence Research and the Journal of Machine Learning Research and is currently President of the International Machine Learning Society. She is a recipient of NSERC's E.W.R. Steacie Memorial Fellowship (2018), a Fellow of the Association for the Advancement of Artificial Intelligence (AAAI), a Senior Fellow of the Canadian Institute for Advanced Research (CIFAR) and in 2016 was named a member of the College of New Scholars, Artists and Scientists by the Royal Society of Canada.
More from the Same Authors
-
2021 : Beyond Ads: Sequential Decision-Making Algorithmsin Public Policy »
Peter Henderson · Brandon Anderson · Daniel Ho -
2021 : Block Contextual MDPs for Continual Learning »
Shagun Sodhani · Franziska Meier · Joelle Pineau · Amy Zhang -
2022 Poster: Pile of Law: Learning Responsible Data Filtering from the Law and a 256GB Open-Source Legal Dataset »
Peter Henderson · Mark Krass · Lucia Zheng · Neel Guha · Christopher D Manning · Dan Jurafsky · Daniel Ho -
2022 Panel: Panel 4C-5: Pile of Law:… & Multi-LexSum: Real-world Summaries… »
Zejiang Shen · Peter Henderson -
2022 Poster: Modeling the Machine Learning Multiverse »
Samuel J. Bell · Onno Kampman · Jesse Dodge · Neil Lawrence -
2021 : TD | Panel Discussion »
Thomas Gilbert · Ayse Yasar · Rachel Thomas · Mason Kortz · Frank Pasquale · Jessica Forde -
2021 : What makes for an interesting RL problem? »
Joelle Pineau -
2021 Panel: How Should a Machine Learning Researcher Think About AI Ethics? »
Amanda Askell · Abeba Birhane · Jesse Dodge · Casey Fiesler · Pascale N Fung · Hanna Wallach -
2021 Poster: Multi-Objective SPIBB: Seldonian Offline Policy Improvement with Safety Constraints in Finite MDPs »
harsh satija · Philip Thomas · Joelle Pineau · Romain Laroche -
2021 Poster: Hyperparameter Optimization Is Deceiving Us, and How to Stop It »
A. Feder Cooper · Yucheng Lu · Jessica Forde · Christopher De Sa -
2020 : Joelle Pineau - Can pre-registration lead to better reproducibility in ML research? »
Joelle Pineau -
2020 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · Chelsea Finn · Joelle Pineau · David Silver · Satinder Singh · Coline Devin · Misha Laskin · Kimin Lee · Janarthanan Rajendran · Vivek Veeriah -
2020 Poster: Adversarial Soft Advantage Fitting: Imitation Learning without Policy Optimization »
Paul Barde · Julien Roy · Wonseok Jeon · Joelle Pineau · Chris Pal · Derek Nowrouzezahrai -
2020 Spotlight: Adversarial Soft Advantage Fitting: Imitation Learning without Policy Optimization »
Paul Barde · Julien Roy · Wonseok Jeon · Joelle Pineau · Chris Pal · Derek Nowrouzezahrai -
2020 Poster: Novelty Search in Representational Space for Sample Efficient Exploration »
Ruo Yu Tao · Vincent Francois-Lavet · Joelle Pineau -
2020 Oral: Novelty Search in Representational Space for Sample Efficient Exploration »
Ruo Yu Tao · Vincent Francois-Lavet · Joelle Pineau -
2019 : Catered Lunch and Poster Viewing (in Workshop Room) »
Gustavo Stolovitzky · Prabhu Pradhan · Pablo Duboue · Zhiwen Tang · Aleksei Natekin · Elizabeth Bondi-Kelly · Xavier Bouthillier · Stephanie Milani · Heimo Müller · Andreas T. Holzinger · Stefan Harrer · Ben Day · Andrey Ustyuzhanin · William Guss · Mahtab Mirmomeni -
2019 : Poster Session »
Rishav Chourasia · Yichong Xu · Corinna Cortes · Chien-Yi Chang · Yoshihiro Nagano · So Yeon Min · Benedikt Boecking · Phi Vu Tran · Kamyar Ghasemipour · Qianggang Ding · Shouvik Mani · Vikram Voleti · Rasool Fakoor · Miao Xu · Kenneth Marino · Lisa Lee · Volker Tresp · Jean-Francois Kagy · Marvin Zhang · Barnabas Poczos · Dinesh Khandelwal · Adrien Bardes · Evan Shelhamer · Jiacheng Zhu · Ziming Li · Xiaoyan Li · Dmitrii Krasheninnikov · Ruohan Wang · Mayoore Jaiswal · Emad Barsoum · Suvansh Sanjeev · Theeraphol Wattanavekin · Qizhe Xie · Sifan Wu · Yuki Yoshida · David Kanaa · Sina Khoshfetrat Pakazad · Mehdi Maasoumy -
2019 Workshop: Retrospectives: A Venue for Self-Reflection in ML Research »
Ryan Lowe · Yoshua Bengio · Joelle Pineau · Michela Paganini · Jessica Forde · Shagun Sodhani · Abhishek Gupta · Joel Lehman · Peter Henderson · Kanika Madan · Koustuv Sinha · Xavier Bouthillier -
2019 Poster: Cold Case: The Lost MNIST Digits »
Chhavi Yadav · Leon Bottou -
2019 Spotlight: Cold Case: The Lost MNIST Digits »
Chhavi Yadav · Leon Bottou -
2019 Poster: No-Press Diplomacy: Modeling Multi-Agent Gameplay »
Philip Paquette · Yuchen Lu · SETON STEVEN BOCCO · Max Smith · Satya O.-G. · Jonathan K. Kummerfeld · Joelle Pineau · Satinder Singh · Aaron Courville -
2018 : Joelle Pineau »
Joelle Pineau -
2018 Workshop: AI for social good »
Margaux Luck · Tristan Sylvain · Joseph Paul Cohen · Arsene Fansi Tchango · Valentine Goddard · Aurelie Helouis · Yoshua Bengio · Sam Greydanus · Cody Wild · Taras Kucherenko · Arya Farahi · Jonathan Penn · Sean McGregor · Mark Crowley · Abhishek Gupta · Kenny Chen · Myriam Côté · Rediet Abebe -
2018 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · David Silver · Satinder Singh · Joelle Pineau · Joshua Achiam · Rein Houthooft · Aravind Srinivas -
2018 Poster: Temporal Regularization for Markov Decision Process »
Pierre Thodoroff · Audrey Durand · Joelle Pineau · Doina Precup -
2018 Invited Talk: Reproducible, Reusable, and Robust Reinforcement Learning »
Joelle Pineau -
2017 : Invited Talk - Joelle Pineau »
Joelle Pineau -
2017 Demonstration: A Deep Reinforcement Learning Chatbot »
Iulian Vlad Serban · Chinnadhurai Sankar · Mathieu Germain · Saizheng Zhang · Zhouhan Lin · Sandeep Subramanian · Taesup Kim · Michael Pieper · Sarath Chandar · Nan Rosemary Ke · Sai Rajeswar Mudumba · Alexandre de Brébisson · Jose Sotelo · Dendi A Suhubdy · Vincent Michalski · Joelle Pineau · Yoshua Bengio -
2017 Poster: Multitask Spectral Learning of Weighted Automata »
Guillaume Rabusseau · Borja Balle · Joelle Pineau -
2016 : Joelle Pineau »
Joelle Pineau -
2015 : Sparse Adaptive Prior for Time Dependent Model Parameters »
Jesse Dodge -
2014 Workshop: From Bad Models to Good Policies (Sequential Decision Making under Uncertainty) »
Odalric-Ambrym Maillard · Timothy A Mann · Shie Mannor · Jeremie Mary · Laurent Orseau · Thomas Dietterich · Ronald Ortner · Peter Grünwald · Joelle Pineau · Raphael Fonteneau · Georgios Theocharous · Esteban D Arcaute · Christos Dimitrakakis · Nan Jiang · Doina Precup · Pierre-Luc Bacon · Marek Petrik · Aviv Tamar -
2014 Workshop: Autonomously Learning Robots »
Gerhard Neumann · Joelle Pineau · Peter Auer · Marc Toussaint -
2014 Demonstration: SmartWheeler – A smart robotic wheelchair platform »
Martin Gerdzhev · Joelle Pineau · Angus Leigh · Andrew Sutcliffe -
2013 Poster: Learning from Limited Demonstrations »
Beomjoon Kim · Amir-massoud Farahmand · Joelle Pineau · Doina Precup -
2013 Poster: Bellman Error Based Feature Generation using Random Projections on Sparse Spaces »
Mahdi Milani Fard · Yuri Grinberg · Amir-massoud Farahmand · Joelle Pineau · Doina Precup -
2013 Spotlight: Learning from Limited Demonstrations »
Beomjoon Kim · Amir-massoud Farahmand · Joelle Pineau · Doina Precup -
2012 Poster: On-line Reinforcement Learning Using Incremental Kernel-Based Stochastic Factorization »
Andre S Barreto · Doina Precup · Joelle Pineau -
2011 Session: Oral Session 10 »
Joelle Pineau -
2011 Poster: Reinforcement Learning using Kernel-Based Stochastic Factorization »
Andre S Barreto · Doina Precup · Joelle Pineau -
2010 Workshop: Learning and Planning from Batch Time Series Data »
Daniel Lizotte · Michael Bowling · Susan Murphy · Joelle Pineau · Sandeep Vijan -
2010 Poster: PAC-Bayesian Model Selection for Reinforcement Learning »
Mahdi Milani Fard · Joelle Pineau -
2009 Poster: Manifold Embeddings for Model-Based Reinforcement Learning under Partial Observability »
Keith Bush · Joelle Pineau -
2008 Poster: MDPs with Non-Deterministic Policies »
Mahdi Milani Fard · Joelle Pineau -
2007 Spotlight: Bayes-Adaptive POMDPs »
Stephane Ross · Brahim Chaib-draa · Joelle Pineau -
2007 Poster: Bayes-Adaptive POMDPs »
Stephane Ross · Brahim Chaib-draa · Joelle Pineau -
2007 Poster: Theoretical Analysis of Heuristic Search Methods for Online POMDPs »
Stephane Ross · Joelle Pineau · Brahim Chaib-draa