Timezone: »
https://twitter.com/svrhm2020 The goal of the 2nd Shared Visual Representations in Human and Machine Intelligence (SVRHM) workshop is to disseminate relevant, parallel findings in the fields of computational neuroscience, psychology, and cognitive science that may inform modern machine learning. In the past few years, machine learning methods---especially deep neural networks---have widely permeated the vision science, cognitive science, and neuroscience communities. As a result, scientific modeling in these fields has greatly benefited, producing a swath of potentially critical new insights into the human mind. Since human performance remains the gold standard for many tasks, these cross-disciplinary insights and analytical tools may point towards solutions to many of the current problems that machine learning researchers face (e.g., adversarial attacks, compression, continual learning, and self-supervised learning). Thus we propose to invite leading cognitive scientists with strong computational backgrounds to disseminate their findings to the machine learning community with the hope of closing the loop by nourishing new ideas and creating cross-disciplinary collaborations. In particular, this year's version of the workshop will have a heavy focus on the relative roles of larger datasets and stronger inductive biases as we work on tasks that go beyond object recognition.
Sat 7:45 a.m. - 8:00 a.m.
|
Arturo Deza, Josh Peterson, Ratan Murty, Tom Griffiths ( Opening Remarks ) link » | 🔗 |
Sat 8:00 a.m. - 8:30 a.m.
|
Martin Hebart ( Talk ) link » | 🔗 |
Sat 8:30 a.m. - 9:00 a.m.
|
David Mayo ( Talk ) link » | 🔗 |
Sat 9:00 a.m. - 9:30 a.m.
|
Tim Kietzmann ( Talk ) link » | 🔗 |
Sat 9:30 a.m. - 10:00 a.m.
|
S.P. Arun ( Talk ) link » | 🔗 |
Sat 10:00 a.m. - 10:15 a.m.
|
Robert Geirhos ( Talk ) link » | 🔗 |
Sat 10:15 a.m. - 10:30 a.m.
|
Aviv Netanyahu ( Talk ) link » | 🔗 |
Sat 10:30 a.m. - 11:30 a.m.
|
Poster Session link » | 🔗 |
Sat 11:30 a.m. - 12:00 p.m.
|
Grace Lindsay ( Talk ) link » | 🔗 |
Sat 12:00 p.m. - 12:30 p.m.
|
Leyla Isik ( Talk ) link » | 🔗 |
Sat 12:30 p.m. - 1:00 p.m.
|
Carlos Ponce ( Talk ) link » | 🔗 |
Sat 1:00 p.m. - 1:30 p.m.
|
Aude Oliva ( Talk ) link » | 🔗 |
Sat 1:30 p.m. - 1:45 p.m.
|
Salman Khan ( Talk ) link » | 🔗 |
Sat 1:45 p.m. - 2:00 p.m.
|
Melanie Sclar ( Talk ) link » | 🔗 |
Sat 2:00 p.m. - 3:00 p.m.
|
Poster Session link » | 🔗 |
Sat 3:00 p.m. - 3:30 p.m.
|
Bria Long ( Talk ) link » | 🔗 |
Sat 3:30 p.m. - 4:00 p.m.
|
Gamaleldin Elsayed ( Talk ) link » | 🔗 |
Sat 4:00 p.m. - 4:30 p.m.
|
Miguel Eckstein ( Talk ) link » | 🔗 |
Sat 4:30 p.m. - 5:00 p.m.
|
Alexei Efros ( Talk ) link » | 🔗 |
Sat 5:00 p.m. - 5:15 p.m.
|
Arturo Deza, Josh Peterson, Ratan Murty, Tom Griffiths ( Concluding Remarks ) link » | 🔗 |
Author Information
Arturo Deza (MIT)
Joshua Peterson (Princeton University)
N Apurva Ratan Murty (Massachusetts Institute of Technology)
Tom Griffiths (Princeton University)
More from the Same Authors
-
2021 : Meta-learning inductive biases of learning systems with Gaussian processes »
Michael Li · Erin Grant · Tom Griffiths -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : How to talk so AI will learn: instructions, descriptions, and pragmatics »
Theodore Sumers · Robert Hawkins · Mark Ho · Tom Griffiths · Dylan Hadfield-Menell -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : The bandwidth of perceptual awareness is constrained by specific high-level visual features »
Michael Cohen · Kirsten Lydic · N Apurva Ratan Murty -
2022 : What does an Adversarial Color look like? »
John Chin · Arturo Deza -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : Joint rotational invariance and adversarial training of a dual-stream Transformer yields state of the art Brain-Score for Area V4 »
William Berrios · Arturo Deza -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 : Joint rotational invariance and adversarial training of a dual-stream Transformer yields state of the art Brain-Score for Area V4 »
William Berrios · Arturo Deza -
2022 : On the informativeness of supervision signals »
Ilia Sucholutsky · Raja Marjieh · Tom Griffiths -
2022 : On the informativeness of supervision signals »
Ilia Sucholutsky · Raja Marjieh · Tom Griffiths -
2022 : Closing Remarks, Award Ceremony and Reception »
Arturo Deza -
2022 : Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement »
Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang -
2022 Workshop: Shared Visual Representations in Human and Machine Intelligence (SVRHM) »
Arturo Deza · Joshua Peterson · N Apurva Ratan Murty · Tom Griffiths -
2022 : Welcome + Opening Remarks »
N Apurva Ratan Murty -
2022 Poster: Using natural language and program abstractions to instill human inductive biases in machines »
Sreejan Kumar · Carlos G. Correa · Ishita Dasgupta · Raja Marjieh · Michael Y Hu · Robert Hawkins · Jonathan D Cohen · nathaniel daw · Karthik Narasimhan · Tom Griffiths -
2022 Poster: How to talk so AI will learn: Instructions, descriptions, and autonomy »
Theodore Sumers · Robert Hawkins · Mark Ho · Tom Griffiths · Dylan Hadfield-Menell -
2022 Poster: Object Representations as Fixed Points: Training Iterative Refinement Algorithms with Implicit Differentiation »
Michael Chang · Tom Griffiths · Sergey Levine -
2021 : Reinforcement learning: It's all in the mind »
Tom Griffiths -
2021 Workshop: Workshop on Human and Machine Decisions »
Daniel Reichman · Joshua Peterson · Kiran Tomlinson · Annie Liang · Tom Griffiths -
2021 : Opening remarks »
Tom Griffiths -
2021 : Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks »
Anne Harrington · Arturo Deza -
2021 : Evaluating the Adversarial Robustness of a Foveated Texture Transform Module in a CNN »
Jonathan Gant · Andrzej Banburski · Arturo Deza -
2021 : On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation »
Binxu Wang · David Mayo · Arturo Deza · Andrei Barbu · Colin Conwell -
2021 : Exploring the Structure of Human Adjective Representations »
Karan Grewal · Joshua Peterson · Bill Thompson · Tom Griffiths -
2021 : What Matters In Branch Specialization? Using a Toy Task to Make Predictions »
Chenguang Li · Arturo Deza -
2021 : Invited Talk 4 »
Tom Griffiths -
2021 Workshop: Shared Visual Representations in Human and Machine Intelligence »
Arturo Deza · Joshua Peterson · N Apurva Ratan Murty · Tom Griffiths -
2021 Oral: Passive attention in artificial neural networks predicts human visual selectivity »
Thomas Langlois · Haicheng Zhao · Erin Grant · Ishita Dasgupta · Tom Griffiths · Nori Jacoby -
2021 Poster: Passive attention in artificial neural networks predicts human visual selectivity »
Thomas Langlois · Haicheng Zhao · Erin Grant · Ishita Dasgupta · Tom Griffiths · Nori Jacoby -
2019 : Concluding Remarks & Prizes Ceremony »
Arturo Deza · Joshua Peterson · Apurva Ratan Murty · Tom Griffiths -
2019 : Tom Griffiths »
Tom Griffiths -
2019 : Opening Remarks »
Arturo Deza · Joshua Peterson · Apurva Ratan Murty · Tom Griffiths -
2019 Workshop: Shared Visual Representations in Human and Machine Intelligence »
Arturo Deza · Joshua Peterson · Apurva Ratan Murty · Tom Griffiths -
2019 Poster: Reconciling meta-learning and continual learning with online mixtures of tasks »
Ghassen Jerfel · Erin Grant · Tom Griffiths · Katherine Heller -
2019 Spotlight: Reconciling meta-learning and continual learning with online mixtures of tasks »
Ghassen Jerfel · Erin Grant · Tom Griffiths · Katherine Heller -
2019 Poster: On the Utility of Learning about Humans for Human-AI Coordination »
Micah Carroll · Rohin Shah · Mark Ho · Tom Griffiths · Sanjit Seshia · Pieter Abbeel · Anca Dragan -
2017 : Break + Poster (1) »
Devendra Singh Chaplot · CHIH-YAO MA · Simon Brodeur · Eri Matsuo · Ichiro Kobayashi · Seitaro Shinagawa · Koichiro Yoshino · Yuhong Guo · Ben Murdoch · Kanthashree Mysore Sathyendra · Daniel Ricks · Haichao Zhang · Joshua Peterson · Li Zhang · Mircea Mironenco · Peter Anderson · Mark Johnson · Kang Min Yoo · Guntis Barzdins · Ahmed H Zaidi · Martin Andrews · Sam Witteveen · SUBBAREDDY OOTA · Prashanth Vijayaraghavan · Ke Wang · Yan Zhu · Renars Liepins · Max Quinn · Amit Raj · Vincent Cartillier · Eric Chu · Ethan Caballero · Fritz Obermeyer