Timezone: »

 
General meta-learning
Louis Kirsch

Fri Dec 11 08:01 AM -- 08:26 AM (PST) @

Humans develop learning algorithms that are incredibly general and can be applied across a wide range of tasks. Unfortunately, this process is often tedious trial and error with numerous possibilities for suboptimal choices. General meta-learning seeks to automate many of these choices, generating new learning algorithms automatically. Different from contemporary meta-learning, where the generalization ability has been limited, these learning algorithms ought to be general-purpose. This allows us to leverage data at scale for learning algorithm design that is difficult for humans to consider. I present a General Meta Learner, MetaGenRL, that meta-learns novel Reinforcement Learning algorithms that can be applied to significantly different environments. We further investigate how we can reduce inductive biases and simplify meta-learning. Finally, I introduce variable-shared meta-learning (VS-ML), a novel principle that generalizes learned learning rules, fast weights, and meta-RNNs (learning in activations). This enables (1) implementing backpropagation purely in the recurrent dynamics of an RNN and (2) meta-learning algorithms for supervised learning from scratch.

Author Information

Louis Kirsch (The Swiss AI Lab IDSIA)

More from the Same Authors

  • 2020 : Meta-Learning Backpropagation And Improving It »
    Louis Kirsch
  • 2021 : Exploring through Random Curiosity with General Value Functions »
    Aditya Ramesh · Louis Kirsch · Sjoerd van Steenkiste · Jürgen Schmidhuber
  • 2021 : Introducing Symmetries to Black Box Meta Reinforcement Learning »
    Louis Kirsch · Sebastian Flennerhag · Hado van Hasselt · Abram Friesen · Junhyuk Oh · Yutian Chen
  • 2021 : Introducing Symmetries to Black Box Meta Reinforcement Learning »
    Louis Kirsch · Sebastian Flennerhag · Hado van Hasselt · Abram Friesen · Junhyuk Oh · Yutian Chen
  • 2021 Poster: Meta Learning Backpropagation And Improving It »
    Louis Kirsch · Jürgen Schmidhuber
  • 2020 : Q/A for invited talk #4 »
    Louis Kirsch
  • 2019 : Poster session »
    Sebastian Farquhar · Erik Daxberger · Andreas Look · Matt Benatan · Ruiyi Zhang · Marton Havasi · Fredrik Gustafsson · James A Brofos · Nabeel Seedat · Micha Livne · Ivan Ustyuzhaninov · Adam Cobb · Felix D McGregor · Patrick McClure · Tim R. Davidson · Gaurush Hiranandani · Sanjeev Arora · Masha Itkina · Didrik Nielsen · William Harvey · Matias Valdenegro-Toro · Stefano Peluchetti · Riccardo Moriconi · Tianyu Cui · Vaclav Smidl · Taylan Cemgil · Jack Fitzsimons · He Zhao · · mariana vargas vieyra · Apratim Bhattacharyya · Rahul Sharma · Geoffroy Dubourg-Felonneau · Jonathan Warrell · Slava Voloshynovskiy · Mihaela Rosca · Jiaming Song · Andrew Ross · Homa Fashandi · Ruiqi Gao · Hooshmand Shokri Razaghi · Joshua Chang · Zhenzhong Xiao · Vanessa Boehm · Giorgio Giannone · Ranganath Krishnan · Joe Davison · Arsenii Ashukha · Jeremiah Liu · Sicong (Sheldon) Huang · Evgenii Nikishin · Sunho Park · Nilesh Ahuja · Mahesh Subedar · · Artyom Gadetsky · Jhosimar Arias Figueroa · Tim G. J. Rudner · Waseem Aslam · Adrián Csiszárik · John Moberg · Ali Hebbal · Kathrin Grosse · Pekka Marttinen · Bang An · Hlynur Jónsson · Samuel Kessler · Abhishek Kumar · Mikhail Figurnov · Omesh Tickoo · Steindor Saemundsson · Ari Heljakka · Dániel Varga · Niklas Heim · Simone Rossi · Max Laves · Waseem Gharbieh · Nicholas Roberts · Luis Armando Pérez Rey · Matthew Willetts · Prithvijit Chakrabarty · Sumedh Ghaisas · Carl Shneider · Wray Buntine · Kamil Adamczewski · Xavier Gitiaux · Suwen Lin · Hao Fu · Gunnar Rätsch · Aidan Gomez · Erik Bodin · Dinh Phung · Lennart Svensson · Juliano Tusi Amaral Laganá Pinto · Milad Alizadeh · Jianzhun Du · Kevin Murphy · Beatrix Benkő · Shashaank Vattikuti · Jonathan Gordon · Christopher Kanan · Sontje Ihler · Darin Graham · Michael Teng · Louis Kirsch · Tomas Pevny · Taras Holotyak
  • 2018 Poster: Modular Networks: Learning to Decompose Neural Computation »
    Louis Kirsch · Julius Kunze · David Barber