Timezone: »
Bayesian optimization (BO) is among the most effective and widely-used blackbox optimization methods. BO proposes solutions according to an explore-exploit trade-off criterion encoded in an acquisition function, many of which are derived from the posterior predictive of a probabilistic surrogate model. Prevalent among these is the expected improvement (EI). Naturally, the need to ensure analytical tractability in the model poses limitations that can ultimately hinder the efficiency and applicability of BO. In this paper, we cast the computation of EI as a binary classification problem, building on the well-known link between class probability estimation (CPE) and density ratio estimation (DRE), and the lesser-known link between density ratios and EI. By circumventing the tractability constraints imposed on the model, this reformulation provides several natural advantages, not least in scalability, increased flexibility, and greater representational capacity.
Author Information
Louis Tiao (University of Sydney)
Aaron Klein (AWS Berlin)
Cedric Archambeau (Amazon)
Edwin Bonilla (CSIRO's Data61)
Matthias W Seeger (Amazon Development Center)
Fabio Ramos (University of Sydney, NVIDIA)
More from the Same Authors
-
2021 : HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO »
Katharina Eggensperger · Philipp Müller · Neeratyoy Mallik · Matthias Feurer · Rene Sass · Aaron Klein · Noor Awad · Marius Lindauer · Frank Hutter -
2021 : Gradient-matching coresets for continual learning »
Lukas Balles · Giovanni Zappella · Cedric Archambeau -
2022 : Variance Reduction in Off-Policy Deep Reinforcement Learning using Spectral Normalization »
Payal Bawa · Rafael Oliveira · Fabio Ramos -
2022 : Learning Successor Feature Representations to Train Robust Policies for Multi-task Learning »
Melissa Mozifian · Dieter Fox · David Meger · Fabio Ramos · Animesh Garg -
2022 Workshop: 5th Robot Learning Workshop: Trustworthy Robotics »
Alex Bewley · Roberto Calandra · Anca Dragan · Igor Gilitschenski · Emily Hannigan · Masha Itkina · Hamidreza Kasaei · Jens Kober · Danica Kragic · Nathan Lambert · Julien PEREZ · Fabio Ramos · Ransalu Senanayake · Jonathan Tompson · Vincent Vanhoucke · Markus Wulfmeier -
2022 Spotlight: Batch Bayesian optimisation via density-ratio estimation with guarantees »
Rafael Oliveira · Louis Tiao · Fabio Ramos -
2022 Poster: Batch Bayesian optimisation via density-ratio estimation with guarantees »
Rafael Oliveira · Louis Tiao · Fabio Ramos -
2021 Poster: Model Selection for Bayesian Autoencoders »
Ba-Hien Tran · Simone Rossi · Dimitrios Milios · Pietro Michiardi · Edwin Bonilla · Maurizio Filippone -
2020 : Invited Talk - "RL with Sim2Real in the Loop / Online Domain Adaptation for Mapping" »
Fabio Ramos · Anthony Tompkins -
2020 : Discussion Panel »
Pete Florence · Dorsa Sadigh · Carolina Parada · Jeannette Bohg · Roberto Calandra · Peter Stone · Fabio Ramos -
2020 Poster: Quantile Propagation for Wasserstein-Approximate Gaussian Processes »
Rui Zhang · Christian Walder · Edwin Bonilla · Marian-Andrei Rizoiu · Lexing Xie -
2020 Poster: Sparse Spectrum Warped Input Measures for Nonstationary Kernel Learning »
Anthony Tompkins · Rafael Oliveira · Fabio Ramos -
2020 Poster: Variational Inference for Graph Convolutional Networks in the Absence of Graph Data and Adversarial Settings »
Pantelis Elinas · Edwin Bonilla · Louis Tiao -
2020 Spotlight: Variational Inference for Graph Convolutional Networks in the Absence of Graph Data and Adversarial Settings »
Pantelis Elinas · Edwin Bonilla · Louis Tiao -
2019 : Poster Session »
Lili Yu · Aleksei Kroshnin · Alex Delalande · Andrew Carr · Anthony Tompkins · Aram-Alexandre Pooladian · Arnaud Robert · Ashok Vardhan Makkuva · Aude Genevay · Bangjie Liu · Bo Zeng · Charlie Frogner · Elsa Cazelles · Esteban G Tabak · Fabio Ramos · François-Pierre PATY · Georgios Balikas · Giulio Trigila · Hao Wang · Hinrich Mahler · Jared Nielsen · Karim Lounici · Kyle Swanson · Mukul Bhutani · Pierre Bréchet · Piotr Indyk · samuel cohen · Stefanie Jegelka · Tao Wu · Thibault Sejourne · Tudor Manole · Wenjun Zhao · Wenlin Wang · Wenqi Wang · Yonatan Dukler · Zihao Wang · Chaosheng Dong -
2019 : Outstanding Contribution Talk: Variational Graph Convolutional Networks »
Edwin Bonilla -
2019 Poster: Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning »
Valerio Perrone · Huibin Shen · Matthias Seeger · Cedric Archambeau · Rodolphe Jenatton -
2019 Poster: Structured Variational Inference in Continuous Cox Process Models »
Virginia Aglietti · Edwin Bonilla · Theodoros Damoulas · Sally Cripps -
2019 Poster: Meta-Surrogate Benchmarking for Hyperparameter Optimization »
Aaron Klein · Zhenwen Dai · Frank Hutter · Neil Lawrence · Javier González -
2018 : Fabio Ramos (Uni. of Sydney): Learning and Planning in Spatial-Temporal Data »
Fabio Ramos -
2018 Workshop: Modeling and decision-making in the spatiotemporal domain »
Ransalu Senanayake · Neal Jean · Fabio Ramos · Girish Chowdhary -
2018 Poster: Scalable Hyperparameter Transfer Learning »
Valerio Perrone · Rodolphe Jenatton · Matthias W Seeger · Cedric Archambeau -
2018 Poster: Integrated accounts of behavioral and neuroimaging data using flexible recurrent neural network models »
Amir Dezfouli · Richard Morris · Fabio Ramos · Peter Dayan · Bernard Balleine -
2018 Poster: Deep State Space Models for Time Series Forecasting »
Syama Sundar Rangapuram · Matthias W Seeger · Jan Gasthaus · Lorenzo Stella · Bernie Wang · Tim Januschowski -
2018 Oral: Integrated accounts of behavioral and neuroimaging data using flexible recurrent neural network models »
Amir Dezfouli · Richard Morris · Fabio Ramos · Peter Dayan · Bernard Balleine -
2016 Poster: Spatio-Temporal Hilbert Maps for Continuous Occupancy Representation in Dynamic Environments »
Ransalu Senanayake · Lionel Ott · Simon O'Callaghan · Fabio Ramos -
2016 Poster: Bayesian Intermittent Demand Forecasting for Large Inventories »
Matthias W Seeger · David Salinas · Valentin Flunkert -
2016 Oral: Bayesian Intermittent Demand Forecasting for Large Inventories »
Matthias W Seeger · David Salinas · Valentin Flunkert -
2015 Poster: Scalable Inference for Gaussian Process Models with Black-Box Likelihoods »
Amir Dezfouli · Edwin Bonilla -
2014 Poster: Extended and Unscented Gaussian Processes »
Daniel M Steinberg · Edwin Bonilla -
2014 Spotlight: Extended and Unscented Gaussian Processes »
Daniel M Steinberg · Edwin Bonilla -
2014 Poster: Automated Variational Inference for Gaussian Process Models »
Trung V Nguyen · Edwin Bonilla -
2014 Poster: On Integrated Clustering and Outlier Detection »
Lionel Ott · Linsey Pang · Fabio Ramos · Sanjay Chawla -
2013 Workshop: Machine Learning for Sustainability »
Edwin Bonilla · Thomas Dietterich · Theodoros Damoulas · Andreas Krause · Daniel Sheldon · Iadine Chades · J. Zico Kolter · Bistra Dilkina · Carla Gomes · Hugo P Simao -
2011 Poster: Improving Topic Coherence with Regularized Topic Models »
David Newman · Edwin Bonilla · Wray Buntine -
2010 Poster: Gaussian Process Preference Elicitation »
Edwin Bonilla · Shengbo Guo · Scott Sanner -
2007 Poster: Multi-task Gaussian Process Prediction »
Edwin Bonilla · Kian Ming A Chai · Chris Williams -
2007 Spotlight: Multi-task Gaussian Process Prediction »
Edwin Bonilla · Kian Ming A Chai · Chris Williams